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Abstract. Towards better QoSs and larger market share in highly competitive

cellular network market, many mobile network operators (MNOs) aggressively

invest in their base station (BS) deployment. As a result, BSs are densely de-

ployed and incur a lot of energy consumptions, resulting in a large portion of

operation cost. To save energy consumption, sharing BSs among different MNOs

is a promising approach, where each user can be served from any BSs regard-

less of his or her original subscription, i.e., roaming. In this paper, we address

the question of how many users should be roamed in a distributed manner with

the goal of some sense of optimality. To answer this question, we take a popula-

tion game approach, where we model flow-level dynamics of traffic and define an

user association game among different MNOs. We prove that the game is an exact

potential game with ‘zero’-price-of-anarchy. We develop a distributed algorithm

that converges the NE (which is a socially optimal point) that can be used as a

light-weight, dynamic user association algorithm.

1 Introduction

With increasing demands of mobile data traffic and large market competition among

MNOs, most MNOs aggressively enhance their spectral efficiency by densely deploy-

ing BSs. As a result, the current BSs are densely deployed in many places, which incurs

a lot of BS energy consumptions with large operating expenditures (OPEX). To save

energy waste, BS sharing is a promising solution, where depending on the traffic con-

ditions and the user locations, more energy-wise efficient association can be applied.

However, without a suitable user association rule, the effects of BS sharing would not

be impressive, which we address in this paper.

Main contribution. In this paper, we study user association policies under a certain

roaming agreement among existing MNOs, where each MNO strategically tries to min-

imize their OPEX by regulating how users should behave for energy efficiency. The user

association determines “how many users to roam?” and depends on some key factors

such as roaming price and BS deployment of each MNO. The main contribution of this

paper is summarized as follows:
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tion (IITP) grant funded by the Korea government (MSIP) (B0126-15-1078)
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◦ Determining user association in BS sharing is a very challenging problem and often

losing tractability, when we consider user-level QoS. Thus, we take a population

game approach, in which all users are categorized by different groups according to

their adaptive modulation and coding (AMC) level and original subscription. This

gives us a mathematically tractable framework with implications for a distributed

user association algorithm. In our model, we take a flow-level performance (such as

file-transfer delay) into account for measuring user-level QoS as done in [1].

◦ The challenges lying in analyzing the game are (a) the complex couplings among

QoS, BS energy consumption and roaming fee, each of them depends on the other

MNO’s roaming price, heterogeneous BS deployment, and user distribution as well

as (b) finding a distributed user association algorithm which has implementable com-

plexity. We first show that user association population game is an exact potential

game which has an NE with ‘zero-price-of-anarchy’. Next, we also study the three

evolutionary dynamics of game that provably converge to the NE, and propose a dis-

tributed user association algorithm inspired by the best response dynamic, which is

one of the evolutionary dynamics considered. Finally, we verify the user-level QoS

and greening effects in BS sharing through numerical simulations.

Related work. User association in BS sharing is proposed in [2–7]. Most work largely

relies on packet-level throughput maximization [2, 5, 6] with an ideal assumption, in

which all MNO have identically the same BS deployment for mathematical tractability.

The authors in [3] only consider power consumption and roaming fee in BS sharing

regardless of user-level QoS. The scope of the study in [4] is uplink BS sharing. Our

work is mainly motivated by [7], the authors first consider a flow-level performance in

BS sharing under some assumptions such as Shanon capacity based channel rate and

existence of synchronous clock in user association. The main difference between [7]

and our works is that we consider practical channel rate according to AMC-level with

asynchronous user association clock. For the single MNO, the flow-level performance

is considered in [1, 8, 9] and our work is motivated by [8, 9] in the context of multiple

MNOs. The authors in [9] take a population game for user association, in which all

users behave to maximize one objective of the single MNOs, while our work considers

competition among multiple MNOs with roaming fee in population game.

2 Model

2.1 System Model

Network and BS sharing service. We consider a set M of multiple MNOs, and each

of them has operating BSs denoted by a set Bm, respectively. For simple notations, we

define a set of other MNOs −m
.
= M\ {m}, and a set of entire BSs B

.
=

⋃

m∈M Bm,
and we abuse the notation of m, where we use m(b) to indicate the MNO who owned

the BS b. For the service model, we consider that each user can subscribe only one

MNO, but the user can be served from any BSs irrespective of her original subscription,

if her MNO pays a certain roaming fee as done in [2–7]. Also, we assume that all MNOs

do not differentiate in the service priority between roaming and unroaming users.
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Users. We assume that there exist sufficiently many users in the cellular networks to

consider the society of continuous mass of user groups called classes. The set of classes

is denoted by Q, and each class q has a mass denoted by dq. We consider that each user

in a class q commonly shares (i) original subscription, (ii) the set of supporting BSs, (iii)

AMC-level from the supporting BSs, and (iv) traffic characteristics. Due to the need of

denoting the set of classes that share original subscription, we occasionally use Qm, in

which the original subscription of the classes (q ∈ Qm) is the MNO m. Note that the

subscription of user is mutually exclusive (i.e, Qm

⋂
Qn = φ, for all m 6= n).

Traffic, capacity and loads. We assume that users in a class q have identically indepen-

dent Poisson arrival traffic with rate λq, and its file size is independently distributed with

mean 1/µq. Therefore, the unit mass in class q generates γq = λq/µq traffic intensity,

and the class q totally generates γqdq traffic intensity. The users in q experience same

data rate cbq when associating with BS b. Note that data rate only depends on AMC-level

between the user and BS b, thus, user group would not be located on a point but on a

region. For a pair of class q and BS b, we define system-load intensity as ̺bq
.
=

γq

cbq
,

which represents the service-time-portion of traffic intensity γq in BS b. For a given BS

b, we introduce an association vector yb .
= (ybq : q ∈ Q), in which ybq ∈ [0, dq] denotes

the fraction of class q’s mass that are associated with BS b, where
∑

b∈B ybq = dq.

For notational convenience later, we also use y
.
= (yb : b ∈ B) to denote the entire

association vector. For a given association vector y, we define system-load in BS b as

ρb(yb)
.
=

∑

q∈Q ̺bqy
b
q.

3 Problem Formulation: Game

We consider a population game played by all users called user association popula-

tion game (UAPG), in which each user has an individual payoff function regulated by

the MNO that he or she subscribes, and selfishly determines associating BS. Note that

user association game implicitly reflects the selfish behavior of each MNO to minimize

their cost (or equivalently maximize their revenue) by regulating the subscriber’s pay-

off function under given roaming price k
.
= (km : m ∈ M) by a roaming agreement

among MNOs a priori. In order to show the regulation rationale, we first describe a

population game and we will compare the NE of the population game to that of con-

ventional BS sharing game played by MNO (as done in [7]) in Section 4.

3.1 Social Objective

In order to include the selfish behavior of MNOs, we consider a social objective of

UAPG as the potential function of BS sharing game as follows.

V(y) = −
∑

b∈B

{

φα(y
b)

︸ ︷︷ ︸

(a)

+ ηEb(yb)
︸ ︷︷ ︸

(b)

+ km(b)

∑

q/∈Qm(b)

gb(ybq)

︸ ︷︷ ︸

(c)

}

, (1)
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where (a) is flow-level performance, (b) is BS power consumption, and (c) is roaming

fee. In detail, (a) flow-level performance (such as file-transfer delay) is modeled by:

φα(y
b) =

{
(1−ρb(yb))1−α

α−1 , if α 6= 1,

log( 1
1−ρb(yb)

), if α = 1,
(2)

where the parameter α ≥ 0 characterized cost for flow-level performance. It is well

known that the function represents the summation of user rate when α = 0, and the

summation of average delay when α = 2 by [1]. For BS power consumption (b), we

consider BS load proportional BS power consumption for each BS b, modeled by:

Eb(yb) = βbEbρb(yb) + (1− βb)Eb, (3)

where βb ∈ [0, 1] is a parameter quantifying the portion of load proportional power

and Eb is maximum BS power consumption when fully utilized (i.e., ρb(yb) = 1).

Note that BS b is ideally energy-proportional when βb = 1, but, βb ranges from 0.5

to 0.8 in practical BSs [10]. In (c), for a given BS b, the function gb(ybq) represents the

summation of load and BS power consumption where the original subscription of class

q is not the MNO who owns BS b (i.e., roaming traffic in class q) as follows.

gb(ybq) = ̺bq · y
b
q + ηβbEb̺bq · y

b
q. (4)

Note that ̺bq · y
b
q represents incurred load on BS b by the amount of ybq mass of class

q. In (1), the parameter η ≥ 0 trade off flow-level performance and BS power con-

sumption. The large η implies MNOs give higher priority to BS power consumption

than flow-level performance when operating cellular networks. The value km, which is

given by some constant K, and is unit roaming price determined by each MNO when

they make an agreement on roaming. Thus, social objective (1) represents negative to-

tal costs for entire traffic service (including roaming and unroaming) in whole cellular

networks.

3.2 Payoff Function

We now introduce the payoff function for a class q in our population game as follows.

F b
q (y)

.
=

−̺bq
(1− ρb(y))α
︸ ︷︷ ︸

(i)

− ηβbEb̺bq
︸ ︷︷ ︸

(ii)

− k(b, q)̺bq(1 + ηβbEb)
︸ ︷︷ ︸

(iii)

, (5)

where k(b, q) represents the unit roaming price of BS b’s owner, when q is not the

subscribers of the owner and 0 otherwise (i.e., if q /∈ Qm(b) then k(b, q) = km(b), and

k(b, q) = 0 for otherwise). The payoff function is composed of three part: (i) selfish

QoS cost, (ii) BS power pricing, and (iii) roaming pricing.

(i) Selfish QoS cost: The first term describes selfish QoS cost motivated by flow-

level performance cost as described in (2). Note that for α = 1, this term represents to
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conditional delay, where the conditional delay is the expected file-transfer time that a

user in class q experiences when she is associated with BS b as described in [9, 11].

(ii) BS power pricing: The second term denotes the increments in BS power con-

sumption when the unit mass of class q is associated with BS b. Note that for a user in

class q, this term considered as a proportional factor of power increment when the user

is associated with BS b, thus actual power increment is multiplication of user’s mass x
and this term (i.e., ηβbEb̺bq · x).

(iii) Roaming pricing: The third term corresponds to the incurred roaming fee by

unit mass of class q. Similar to BS power pricing, a user in class q generates roaming

fee according to her mass x with proportional to this term, if the user is associated with

BS b (i.e., k(b, q)̺bq(1 + ηβbEb) · x).

4 Equilibrium Analysis

In this section, we analyze UAPG for which we exploit the potential function of the

game. Primary issues that we are interested in include the existence of NE, price-of-

anarchy, and the existence of a distributed user association algorithm which converges

to the NE.

4.1 Price-of-Anarchy and Existence of Equilibrium

Prior to describe price-of-anarchy and equilibrium, we first show that our game is an

exact potential game with a certain potential function that gives us the insight of price-

of-anarchy and the existence of equilibrium.

Theorem 1. The user association game is an exact potential game with the following

potential function V (y):

V (y) = −
∑

b∈B

{

φα(y
b) + ηEb(yb) + km(b)

∑

q/∈Qm

gb(ybq)
}

. (6)

Proof. For a continuous player set (e.g., large population of player), it is suffice to show

that there is a continuously differentiable function whose gradient for population is

same as the payoff function of each class by [12]. The gradient of the potential function

(6) for all population is given by:

∇yV (y) =
(∂V (y)

∂ybq
: q ∈ Q, b ∈ B

)

For all q ∈ Q and b ∈ B, in the case α 6= 1,

∂V (y)

∂ybq
= −

∂

∂ybq

[∑

b∈B

{ (1− ρb(yb))1−α

α− 1
+ η(βbEbρb(yb) + (1− βb)Eb)

+km(b)

∑

q/∈Qm(b)

̺bqy
b
q + ηβbEb̺bqy

b
q

}]
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= −
∂

∂ybq

[∑

b∈B

{ (1−
∑

q∈Q ̺bqy
b
q)

1−α

α− 1
+ η(βbEb

∑

q∈Q

̺bqy
b
q + (1− βb)Eb)

+km(b)

∑

q/∈Qm(b)

̺bqy
b
q + ηβbEb̺bqy

b
q

}]

= −
[

− ̺bq

(1− α

α− 1

)

(1−
∑

q∈Q

̺bqy
b
q)

−α + ηβbEb̺bq + k(b, q)(̺bq + ηβbEb̺bq)
]

= −̺bq

[ 1

(1− ρb(y))α
+ ηβbEb + k(b, q)(1 + ηβbEb)

]

= F b
q (y).

For the case α = 1,

∂V (y)

∂ybq
= −

∂

∂ybq

[∑

b∈B

{

log
( 1

1− ρb(yb)

)

+ η(βbEbρb(yb) + (1− βb)Eb)

+km(b)

∑

q/∈Qm(b)

̺bqy
b
q + ηβbEb̺bqy

b
q

}]

= −
∂

∂ybq

[∑

b∈B

{

log
( 1

1−
∑

q∈Q ̺bqy
b
q

)

+ η(βbEb
∑

q∈Q

̺bqy
b
q + (1− βb)Eb)

+km(b)

∑

q/∈Qm(b)

̺bqy
b
q + ηβbEb̺bqy

b
q

}]

= −
[

− ̺bq

( −1

(1−
∑

q∈Q ̺bqy
b
q)

2

)

(1 −
∑

q∈Q

̺bqy
b
q) + ηβbEb̺bq

+k(b, q)(̺bq + ηβbEb̺bq)
]

= −̺bq

[ 1

(1− ρb(y))
+ ηβbEb + k(b, q)(1 + ηβbEb)

]

= F b
q (y),

which completes the proof.

Lemma 1. The potential V (y) is a concave function in y.

Proof. The functions, V (y), φα(y
b), and Eb(yb) are convex functions in ρb(yb), re-

spectively, and ρb(yb) is a weighted (̺bq) linear combination of yb. Thus, V (y) and

φα(y) become convex functions in y by convex-preserving operation. The function

gb(ybq) is definitely a convex function in ybq as described in (4). Thus, V (y) is a concave

function in y (by inversed sign) due to the property of convex preserving on summation.

Theorem 2. User association game has an NE which has zero price-of-anarchy.

Proof. The association vector y is bounded by the mass of each class q (i.e., dq ∈
[0, dq]). Thus, there is a global maximal point on the range of association vector, and

the point is an NE by well know property of potential game [12], in which the NE should

satisfy KKT conditions for a maximizer of the potential function V (y). Zero price-of-

anarchy is also easily verified by the potential function. Since the potential function (6)
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is exactly equal to the social objective as described in (1) and KKT conditions are

necessary and sufficient condition for a global maximizer in concave function, the NE

satisfying KKT conditions should be a global maximizer of the social objective.

Note that there could be multiple NEs in UAPG, because the NE only implies an

assigned amount of population for all pairs of user groups and BSs, and the assigned

population would be achieved by various user associations when we consider identical

users who share the traffic characteristics and AMC-level in each class.

Rationality for MNOs. As we mentioned earlier, for all classes in MNO m (i.e, q ∈
Qm), m regulates the class q’s payoff function to maximize their economical revenue

(or minimize cost) in our game, while the MNO m hopefully behaves like the game,

directly played by MNOs as done in [7]. Note that our game and the game played by

MNOs have the exactly same potential function (i.e, equivalent game) for an arbitrary

unit roaming price. Thus, the payoff function (5) is rational to each MNO, and implicitly

considers the selfish behaviors of all MNOs for maximizing their revenue.

4.2 Evolutionary Dynamics and Distributed Association Algorithm

Developing a distributed algorithm for user association is important in practice, be-

cause, if it exists, high energy-efficiency can be achieved with low-cost operations of

the networks. In this subsection, we propose a distributed user association algorithm,

motivated by an evolutionary dynamic that converges to the NE in population game.

For convenience in understanding, we first introduce three well-known evolutionary

dynamics [13], Replicator dynamic, Brown-von Neumann-Nash (BNN) dynamic, and

best response dynamic with the definitions and the convergence properties, and then,

propose a distributed user algorithm that can work practical cellular networks.

Replicator dynamic. One of the best known dynamic in evolutionary game is the repli-

cator dynamic, and its definition is as follows.

yb,t+1
q = T b

q (y
t)

.
= yb,tq

(

F b
q (y

t)−
1

dq

∑

b∈B

yb,tq F b
q (y

t)
)

, (7)

where yt is the social-state y at time step t, and the term (F b
q (y

t)− 1
dq

∑

b∈B yb,tq F b
q (y

t))

is the excess payoff of strategy b in class q. Under replicator dynamic, a user randomly

selects an opponent in the same class and changes her strategy to the strategy of oppo-

nent, if the payoff of the opponent strategy is higher than her own with a probability

proportional to the payoff difference.

BNN dynamic. The definition of BNN dynamic is as follows.

yb,t+1
q = T b

q (y
t)

.
= dqk

b
q(y

t)− ybq
∑

b∈B

kbq(y
t), (8)

where kbq(y
t) = max{F b

q (y
t)− 1

dq

∑

b∈B yb,tq F b
q (y

t), 0}. In BNN dynamic, each user

randomly chooses a strategy i and changes her strategy to i with a probability propor-

tional to strategy i’s excess payoff, if the payoff of i exceeds the payoff of her own at

every updating strategy epoch.
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Best response dynamic. In best response dynamic, each user selects her strategy that

maximizes her payoff function for a given social-state y as follows.

yb,t+1
q = T b

q (y
t)

.
= argmax

b∈B
F b
q (y

t) (9)

Note that a user selects exact one pure strategy in best response dynamic, however, when

we consider a class, in which infinitesimal users individually select their strategies, best

response (9) behaves like a mixed strategy in population game.

Convergence. It is well-known by [12], a dynamic, satisfying positive correlation (PC)

and noncomplacency (NC) conditions, converges to the NE in potential game which has

a smooth potential function. The first condition, PC, states that payoff and drift rate of

strategy in dynamic are positively correlated (i.e., weak-monotonicity in dynamic). The

details of PC is T (y) · F (y)
.
=

∑

q∈Q

∑

b∈B T b
q (y)F

b
q (y) > 0, whenever V (y) 6= 0.

For every trajectory of dynamic, the condition PC implies that (i) the potential function

is weakly-increasing (i.e., d
dtV (yt) = ∇ytV (yt) · yt = T (yt) · F (yt) ≥ 0), (ii)

there is zero-drift for a stationary point (i.e. T (yt) = 0 whenever d
dtV (yt) = 0).

Thus, all trajectories satisfying PC provably converge to a stationary point. However,

all stationary points would not be NEs, where the points are either local maximizer or

boundary of potential function. The condition, NC, guarantees that a stationary point

should be a NE of potential game. By the studies in [12,13], it is verified that BNN and

best response dynamic satisfy both PC and NC, but replicator dynamic only satisfies

PC in the potential game. For more detail, we refer the readers to [12, 13].

Distributed user association algorithm. Low signaling overheads is important in prac-

tice. In UAPG, the best response dynamic seems to require less information than the

others. In detail, best response dynamic only requires social state y, but the others re-

quire additional information such as average payoff and opponent’s payoff. Thus, we

propose a distributed algorithm motivated by best response dynamic.

Distributed user association algorithm

BS algorithm. For every changes in user association, each BS b updates ρb,t as follows.

ρb,t =
∑

q∈Q

̺bq · y
b
q, (10)

and exchange (ρb,t, km(b)) to all BS in the neighboring BS set, denoted by N (b). After

exchanging the information, each BS broadcasts ρN (b),t, ρb,t and k to all (associated)

users.

User algorithm. For a user in some class q, at every association clock2 ticking, the user

associates with a BS that satisfies following:

argmax
b∈{i}∪N (i)

−̺iq

{ 1

(1 − ρi,t)α
+ ηβiEi + k(i, q)(1 + ηβiEi)

}

, (11)

2 We consider each user has an individual clock for determining user association. In detail,

this clock would be implemented by many ways such as Poisson clock, and flow arrival and

departure time.
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Fig. 1. Various results of BS sharing

Theorem 3. The distributed user association algorithm converges to the NE.

Proof. Our algorithm is a practical version of best response dynamic which satisfies

both (i) PC and (ii) NC.

5 Numerical Analysis

In this section, we verify the greening effects of our algorithm inspired by the analysis

in the population game framework. In all simulations, we consider a duopoly market

(i.e., 2 MNOs denoted by m and n) in 0.5 km by 0.5 km square area, in which MNO m
and n have 1 BS denoted by BS1 and BS2, respectively, where BS1 and BS2 are located

at (0,0) and (0.5,0.5)3, respectively. We consider that users are uniformly distributed in

the square area while generating homogeneous traffic requests. For data rate cbq, we refer

to the pairs of data rate and AMC-level in Mobile WiMAX [14]. We consider the case

when all MNOs adopt a same unit roaming price (i.e., km = kn) for roamed traffic due

to the symmetry property in unit roaming price under symmetric BS deployment and

identical user characteristics.

We first verify the convergence of our algorithm (see Figure 1(a)). In the figure,

the initial points are the BS loads of conventional non-BS sharing and each BS load

rapidly decays from the initial point until it converges with iterations. In Figs. 1(b), 1(c),

and 1(d), we show the impact of our algorithm in terms of potential function, flow-level

performance, and BS power consumptions according to given unit roaming price k. The

result in Fig. 1(b) shows that social objective is maximized when each MNO assigns

zero-unit roaming price and it decreases as k increases due to the raised roaming price.

As shown in Figs. 1(c), and 1(d), flow-level performance (i.e., delay when α = 2) and

total BS power consumptions are increased by expensive roaming price, and finally

converge to that in conventional non-BS sharing, since no one is interested in roaming

when highly expensive roaming price (e.g., km = kn ≥ 150) is applied.

3 The unit of axis is km.
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6 Conclusions

In this paper, we studied BS sharing under a fixed roaming price using a population

game-theoretic approach, and we proposed a practical user association algorithm moti-

vated by an evolutionary dynamic, which is best response dynamic. We further demon-

strated that a significant amount of delay and of energy consumption would be reduced

by the proposed algorithm.
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