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Abstract

Crowdsourcing systems are popular for solving
large-scale labelling tasks with low-paid (or even
non-paid) workers. We study the problem of re-
covering the true labels from noisy crowdsourced
labels under the popular Dawid-Skene model.
To address this inference problem, several algo-
rithms have recently been proposed, but the best
known guarantee is still significantly larger than
the fundamental limit. We close this gap un-
der a simple but canonical scenario where each
worker is assigned at most two tasks. In partic-
ular, we introduce a tighter lower bound on the
fundamental limit and prove that Belief Propaga-
tion (BP) exactly matches this lower bound. The
guaranteed optimality of BP is the strongest in
the sense that it is information-theoretically im-
possible for any other algorithm to correctly la-
bel a larger fraction of the tasks. In the general
setting, when more than two tasks are assigned
to each worker, we establish the dominance re-
sult on BP that it outperforms other existing algo-
rithms with known provable guarantees. Experi-
mental results suggest that BP is close to optimal
for all regimes considered, while existing state-
of-the-art algorithms exhibit suboptimal perfor-
mances.

1. Introduction

Crowdsourcing platforms provide scalable human-powered
solutions to labelling large-scale datasets at minimal cost.
They are particularly popular in domains where the task
is easy for humans but hard for machines, e.g., computer
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vision and natural language processing. For example, the
CAPTCHA system (Completely Automated Public Turing
test to tell Computers and Humans Apart, 2000) uses a
pair of scanned images of English words, one for authen-
ticating the user and the other for the purpose of getting
high-quality character recognitions to be used in digitizing
books. However, because the tasks are tedious and the pay
is low, one of the major issues is the labelling quality. Er-
rors are common even among those who put in efforts. In
real-world systems, spammers are abundant, who submit
random answers rather than good-faith attempts to label,
and there are adversaries, who may deliberately give wrong
answers.

A common and powerful strategy to improve reliability is
to add redundancy: assigning each task to multiple work-
ers and aggregating their answers by some algorithm such
as majority voting. Although majority voting is widely
used in practice, several novel approaches, which outper-
forms majority voting, have been recently proposed, e.g.
(Smyth et al., 1995; Jin & Ghahramani, 2003; Whitehill
et al., 2009; Welinder et al., 2010; Raykar et al., 2010).
The key idea is to identify the good workers and give more
weights to the answers from those workers. Although the
ground truth may never be exactly known, one can com-
pare one worker’s answers to those from other workers on
the same tasks, and infer how reliable or trustworthy each
worker is.

The standard probabilistic model for representing the noisy
answers in labelling tasks is the model of (Dawid & Skene,
1979). Under this model, the core problem of interest is
how to aggregate the answers to maximize the accuracy of
the estimated labels. This is naturally posed as a statisti-
cal inference problem that we call the crowdsourced clas-
sification problem. Due to the combinatorial nature of the
problem, the Maximum A Posteriori (MAP) estimate is op-
timal but computationally intractable. Several algorithms
have recently been proposed as approximations, and their
performances are demonstrated only by numerical experi-
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ments. These include algorithms based on spectral methods
(Ghosh et al., 2011; Dalvi et al., 2013; Karger et al., 2011;
2013; 2014), Belief Propagation (BP) (Liu et al., 2012),
Expectation Maximization (EM) (Liu et al., 2012; Zhang
et al., 2014), maximum entropy (Zhou et al., 2012; 2015),
weighted majority voting (Littlestone & Warmuth, 1989; Li
etal., 2013; Li & Yu, 2014), and combinatorial approaches
(Gao & Zhou, 2013).

Despite the algorithmic advances, theoretical advances
have been relatively slow. Some upper bounds on the per-
formances are known (Karger et al., 2011; Zhang et al.,
2014; Gao & Zhou, 2013), but fall short of answering
which algorithm should be used in practice. In this pa-
per, we ask the fundamental question of whether it is pos-
sible to achieve the performance of the optimal MAP esti-
mator with a computationally efficient inference algorithm.
In other words, we investigate the computational gap be-
tween what is information-theoretically possible and what
is achievable with a polynomial time algorithm.

Our main result is that there is no computational gap in
the crowdsourced classification problem, under some sim-
ple but canonical scenarios. Under some assumptions on
the parameters of the problem, we show the following:

Belief propagation is exactly optimal.

To the best of our knowledge, this is the first result proving
an algorithm is not only computationally efficient but also
provably maximizing the fraction of correctly labeled tasks,
i.e., achieving exact optimality.

Contribution. We identify simple but canonical regimes
where the standard BP achieves the performance of the
optimal MAP estimator. Namely, when tasks are binary-
classifiable, each worker is assigned at most two tasks, and
each task is assigned to a sufficient number of workers, we
prove that it is impossible for any other algorithm to cor-
rectly label a larger fraction of tasks than BP. This is the
only known algorithm to achieve such a strong notion of
optimality and settles the question of whether there is a
computational gap in the crowdsourced classification prob-
lem for a broad range of parameters.

Although our analysis techniques do not generalize to the
case when each worker is assigned more than two tasks,
our experimental results suggest that the optimality of BP
generally holds for all regimes considered, while all other
algorithms are sub-optimal in certain regimes for synthetic
and real datasets we considered (See Section 5). Under this
general scenario, we prove the following dominance result
of our approach: BP correctly labels more tasks than two
provable methods, the KOS algorithm from (Karger et al.,
2011) and the majority voting.

The provable optimality of BP-based algorithms in graph-
ical models with loops (such as those in our model) is

known only in a few instances including community detec-
tion (Mossel et al., 2014), error correcting codes (Kudekar
et al., 2013) and combinatorial optimization (Park & Shin,
2015). Technically, our proof strategy for the optimality of
BP is similar to that in (Mossel et al., 2014) where another
variant of BP algorithm is proved to be optimal to recover
the latent community structure among users. However, our
proof technique overcomes several unique challenges, aris-
ing from the complicated correlation among tasks that can
only be represented by weighted and directed hyper-edges,
as opposed to simpler unweighted undirected edges in the
case of stochastic block models. This might be of indepen-
dence interest, for example, in analyzing censored block
models (Saade et al., 2015; Hajek et al., 2015) with obser-
vations that depend on the direction of the edges.

Related work. The crowdsourced classification problem
has been first studied in the dense regime, where all tasks
are assigned all the workers (Ghosh et al., 2011; Zhang
et al., 2014). In this paper, we focus on the sparse regime,
where each task is assigned to a few workers. Suppose ¢
workers are assigned each task. In practical crowdsourc-
ing systems, a typical choice of £ is three or five. For a
fixed ¢, the probability of error now does not decay with
increasing dimension of the problem. The theoretical in-
terest is focused on identifying how the error scales with
¢, that represents how much redundancy should be intro-
duced in the system. An upper bound that scales as e~ ()
(when ¢ > ¢* for some ¢* that depends on the problem
parameters) was proved by (Karger et al., 2011), analyz-
ing a spectral algorithm that is modified to use the spectral
properties of the non-backtracking operators instead of the
usual adjacency matrices. This scaling order is also shown
to be optimal by comparing it to the error rate of an ora-
cle estimator. A similar bound was also proved for another
spectral approach, but under more restricted conditions in
(Dalvi et al., 2013). Our main results provide an algorithm
that (when ¢ > C for some constant C' and each worker
is assigned two tasks) correctly labels the optimal fraction
of tasks, in the sense that it is information-theoretically im-
possible to correctly label a larger fraction for any other
algorithms.

These spectral approaches are popular due to simplicity,
but empirically do not perform as well as BP. In fact, the
authors in (Liu et al., 2012) showed that the state-of-the-
art spectral approach proposed in (Karger et al., 2011) is
a special case of BP with a specific choice of the prior on
the worker qualities. Since the algorithmic prior might be
in mismatch with the true prior, the spectral approach is in
general suboptimal.

Organization. In Section 2, we provide necessary back-
grounds including the Dawid-Skene model for crowd-
sourced classification and the BP algorithm. Section 3 pro-
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vides the main results of this paper, and their proofs are
presented in Section 4. Our experimental results on the per-
formance of BP are reported in Section 5 and we conclude
in Section 6.

2. Preliminaries

We describe the mathematical model and present the stan-
dard MAP and the BP approaches.

2.1. Crowdsourced Classification Problem

We consider a set of n binary tasks, denoted by V. Each
task ¢ € V is associated with an arbitrary but latent ground
truth s; € {—1,+1}. We assume that s;’s are indepen-
dently chosen uniformly at random. We let W denote the
set of workers who are assigned tasks to answer. Hence,
this task assignment is represented by as a bipartite graph
G = (V,W, E), where edge (i,u) € E indicates that task
1 is assigned to worker u. For notational simplicity, let
Ny :={i € V : (i,u) € E} denote the set of tasks as-
signed to worker u and conversely let M; := {u € W :
(i,u) € E} denote the set of workers to whom task 7 is
assigned.

When task 7 is assigned to worker u, worker u provides
a binary answer A;, € {—1,+1}, which is a noisy as-
sessment of the true label s;. Each worker u is parame-
terized by a reliability p,, € [0, 1], such that each of her
answers is correct with probability p,,. Namely, for given
p:= {py : u € W}, the answers A := {4;,, : (4,u) € E}
are independent random variables such that

Si
Agy =
—s;

We assume that the average reliability is greater than 1/2,
ie., p:=E[2p, — 1] > 0.

with probability p,,
with probability 1 — p,, -

This Dawid-Skene model is the most popular one in crowd-
sourcing dating back to (Dawid & Skene, 1979). The un-
derlying assumption is that all the tasks share a homoge-
neous difficulty; the error probability of a worker is con-
sistent across all tasks. We assume that the reliability p,,’s
are i.i.d. according to a reliability distribution on [0, 1], de-
scribed by a probability density function 7.

For the theoretical analysis, we assume that the bipartite
graph is drawn uniformly over all (¢, r)-regular graphs for
some constants ¢, r using, for example, the configuration
model (Bollobds, 1998).! Each task is assigned to ¢ ran-
dom workers and each worker is assigned r random tasks.
In real-world crowdsourcing systems, the designer gets to
choose which graph to use for task assignments. Random

"'We assume constants ¢,  for simplicity, but our results hold
as long as fr = O(logn).

regular graphs have been proven to achieve minimax opti-
mal performance in (Karger et al., 2011), and empirically
shown to have good performances. This is due to the fact
that the random graphs have large spectral gaps.

2.2. MAP Estimator

Under this crowdsourcing model with given assignment
graph G = (V, W, E) and reliability distribution 7, our
goal is to design an efficient estimator 3(A) € {—1,+1}V
of the unobserved true answers s := {s; : i € V} from
the noisy answers A reported by workers. In particular, we
are interested in the optimal estimator minimizing the (ex-
pected) average bit-wise error rate, i.e.,

minimize P (8(A)) (1)

§:estimator
where we define
P (3) :i= — E Prls; # 8 (A)].
zGV

The probability is taken with respect to s and A for given G
and 7. From standard Bayesian arguments, the maximum
a posteriori (MAP) estimator is an optimal solution of (1):

§7(A) := argmax Pr[s; | Al. (2)

Si

However, this MAP estimate is challenging to compute, as
we show below. Note that

Pr[s,p | A] < Pr[p] - Pr[A | s,p]

= H Pf[Pu] H Pr[Azu | Sivpu]

ueW P€EN,,
= [ =u) P =p)== 3
ueW

where 7, := |, is the number of the tasks assigned to
worker u and ¢, := |[{i € N, : A;, = s;}| is the number
of the correct answers from worker . Then,

Pr[s | A] = /[0 - Pr(s,p | Aldp
o« ] / (pu) - P (1= pu)™“dpu (4)

ueW

=fu (sNu)

where we let f,, (sn,) := E[pS* (1 — p,)™ ] denote the
local factor associated with worker u. We note that the
factorized form of the joint probability of s in (4) corre-
sponds to a standard graphical model with a factor graph
G = (V,W, E) that represents the joint probability of s
given A, where each task i € V and each worker u € W
correspond to the random variable s; and the local fac-
tor f,, respectively, and the edges in E indicate couplings
among the variables and the factors.
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The marginal probability Pr[s; | A] in the optimal estima-
tor §7(A) is calculated by marginalizing out s_; := {s; :
i #j € V}from (4),ie.,

Prls; [ A]= )

se{E1}VNe

< ST fu o) 5)

S-i ueW

Pr[s | A]

We note that the summation in (5) is taken over exponen-
tially many s_; € {—1,+1}"! with respect to n. Thus, in
general, the optimal estimator §*, which requires to obtain
the marginal probability of s; given A in (2), is computa-
tionally intractable.

2.3. Belief Propagation

Recalling the factor graph described by (4), the compu-
tational intractability in (5) motivates us to use a stan-
dard sum-product belief propagation (BP) algorithm on the
factor graph as a heuristic method for approximating the
marginalization. The BP algorithm is described by the fol-
lowing iterative update of messages m;_;,, and m,_,; be-
tween task 7 and worker u and belief b; on each task ¢:

t+1 t
mi—)u(si) x H mv—)i(si) ) (6)

veMi\{u}

t+1 t+1

u-tn Z ,fu SNu H mj:u (7)
SNu\{l} .]EN

btJrl (si) x H mfjiz ()
ueM;

where the belief b;(s;) is the estimated marginal proba-
bility of s; given A. We here initialize messages with a
trivial constant 5 L and normalize messages and beliefs, i.e.,
D Mimsu(s 2) > s Mu—i(si) = 3, bi(si) = 1. Then
at the end of k 1terat10ns we estimates the label of task i as

follows:
8BP = arg max b¥(s;). )

Si

We note that if the factor graph is a tree, then it is known
that the belief converges, and computes the exact marginal
probability (Pearl, 1982).

Property 1. If assignment graph G is a tree so that the
corresponding factor graph is a tree as well, then

bi(s:)
where bt (s;) is iteratively updated by BP in (6)—(8).

=Prs; | A] forallt >n

However, for general graphs which may have loops, e.g.,
random (¢, r)-regular graphs, BP has no performance guar-
antee, i.e., BP may output b;(s;) # Pr[s; | A]. Further
the convergence of BP is not guaranteed, i.e., the value of
lim;—, o0 b (s;) may not exist.

3. Performance Guarantees of BP

In this section, we provide the theoretical guarantees on
the performance of BP. To this end, we consider the out-
put of BP in (9) with £k = loglogn. Then, one can
check that the overall complexity of BP is bounded by
O(ntrlogr - loglogn) because each iteration of BP re-
quires O(nfrlogr) operations (Liu et al., 2012).

3.1. Exact Optimality of BP for r < 2

We first state the following theorem on exact optimality of
BP when the number of tasks assigned to each worker is at
most two.

Theorem 1. Consider the Dawid-Skene model under the
task assignment generated by a random bipartite ({,r)-
regular graph G consisting of n tasks and (¢/r)n workers.
For p = E[2p, — 1] > 0 and r € {1,2}, there exists
a constant Cy, - that only depends on 1 and r such that if

> C,p, then
lim E| min Pe,(8) — Per(537)] = 0,
n— 00 S:estimator
where 587 is the output of BP in (9) with k = log log n and

the expectation is taken with respect to the graph G.

A proof is provided in Section 4.1. Our analysis compares
BP to an oracle estimator. This estimator not only has
access to the observed crowdsourced labels, but also the
ground truths of a subset of tasks. Given this extra infor-
mation, it performs the optimal estimation, outperforming
any algorithm that operates only on the observations. Us-
ing the fact that the random (¢, r)-regular bipartite graph
has a locally tree-like structure (Bollobds, 1998) and BP
is exact on the local tree (Pearl, 1982), we prove that the
performance gap between BP and the oracle estimator van-
ishes due to decaying correlation from the information on
the outside of the local tree to the root. This establishes that
the gap between BP and the best estimator vanishes, in the
large system limit.

The assumption on y is mild, since it only requires that the
crowd as a whole can distinguish what the true label is. In
the case 1 < 0, one can flip the sign of the final estimate to
achieve the same guarantee. We require k¥ = O(loglogn)
to ensure we have a tree within the neighborhood of depth
k, and at the same time include enough labels in the process
to ensure convergence to optimality.

When r = 1, there is nothing to learn about the workers
and simple majority voting is also the optimal estimator.
BP also reduces to majority voting in this case, achieving
the same optimality, and in fact C, ; = 1. The interesting
non-trivial case is when r» = 2. The sufficient condition is
for ¢ to be larger than some C', 5. Although experimental
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results in Section 5 suggest that BP is optimal in all regimes
considered, proving optimality for » > 2 or £ < C,, o re-
quires new analysis techniques, beyond those we develop in
this paper. Both the problem of analyzing BP for ¢ < C,, .
(sample sparse regime) and for » > 2 (with higher-order
factor nodes) are challenging problems. Similar challenges
have not been resolved even in a simpler models of stochas-
tic block models, where BP and other efficient inference
algorithms have been analyzed extensively (Mossel et al.,
2014; Bordenave et al., 2015).

3.2. Relative Dominance of BP for » > 3

For general ¢ and r, we establish the dominance of BP over
two existing algorithms with known guarantees: the major-
ity voting (MV) and the state-of-the-art iterative algorithm
(KOS) in (Karger et al., 2011). In the sparse regime, where
¢r = O(logn), these are the only algorithms with provable
guarantees.

Theorem 2. Consider the Dawid-Skene model under the
task assignment generated by a random bipartite (£,71)-
regular graph G consisting of n tasks and (¢/r)n workers.
Let 3™V and 5505 denote the outputs of MV and KOS al-
gorithms, respectively. Then, for any {,r > 1 such that
¢r = O(logn),

lim E [P, (357)]

n—oo

< min{ lim E [perr(gMV)] , lim E [Perr(gxos)]}

n—r oo n—r oo

where 38 is the output of BP in (9) with k = log logn and
the expectations are taken with respect to the graph G.

A proof of the above theorem is presented in Section 4.2.
Using Theorem 2 and the known error rates of MV and
KOS algorithms in (Karger et al., 2011), one can derive the
following upper bound on the error rate of BP:

lim B [Perr(557)]
_(M) _(L‘ a>(L=1)(r=1)—1 )
< min{e 2 ) e \2 3¢ (£—1)(r—1)+q(£-1) (10)

where ¢ := E [(2p, — 1)?].

This is particularly interesting, since it has been observed
empirically and conjectured with some non-rigorous anal-
ysis in (Karger et al., 2014) that there exists a threshold
(¢ —1)(r — 1) = 1/¢?, above which KOS dominates over
MYV, and below which MV dominates over KOS (see Fig-
ure 1). This is due to the fact that KOS is inherently a spec-
tral algorithm relying on the singular vectors of a particular
matrix derived from A. Below the threshold, the sample
noise overwhelms the signal in the spectrum of the matrix,
which is known as the spectral barrier, and spectral meth-
ods fail. However, in practice, it is not clear which of the

two algorithms should be used, since the threshold depends
on latent parameters of the problem. Our dominance result
shows that one can safely use BP, since it outperforms both
algorithms in both regimes governed by the threshold. This
is further confirmed by numerical experiments in Figure 1.

4. Proofs of Theorems

In this section, we provide the proofs of Theorems 1 and 2.

4.1. Proof of Theorem 1

We first consider the case r = 1. Then, GG is the set of
disjoint one-level trees, i.e., star graphs, where the root of
each tree corresponds to task p € V' and the leaves are the
set M, of workers assigned to the task p. Since the graphs
are disjoint, we have Pr[s,|A] = Pr[s,|A, 1], where A =
{Ajy : (i,u) € E}and A, 1 = {A,, : v € M,}. From
Property 1, it follows that

§EP = argmax Prls, | A,1] = 8,(A,1)-
Therefore, for any £ > 1, the optimal MAP estimator i (A)
in (2) is identical to the output §EP with any k£ > 1.

From now on, we focus on the case » = 2, and we condi-
tion on a fixed task assignment graph G. All the arguments
holds for general r, but the key technical lemma requires r
to be exactly two (Lemma 3). We will identify a condition
under which the desired claim holds, and show that under
the random (¢, r)-regular model this condition holds with
sufficiently large probability.

Define p € V as a random node chosen uniformly at ran-
dom and let A(3,) denote the gain of estimator 5, com-
pared to random guessing, i.e.,

. 1 . . 1 .
A(8,) == 3 Pr[s, # 5,] and Pe(8) = 3~ A(3,)
where the expectation is taken with respect to the distribu-
tion of G. Then it is enough to show that A(57(A)) and
A(3BP) converge to the same value, i.e., the limit value of

limy, o0 E[A(8}(A))] exists and as n — oo,

E [A(35(4) — AP — 0 (11

where the expectation is taken with respect to the distribu-
tion of G.

To this end, we introduce two estimators, 23 (Ap,2r) and
87 (Ap,2k), which have accesses to different amounts and
types of information. Let G, o1 = (Vj 2k, W 2k, Ep 2k)
denote the subgraph of G induced by all the nodes within

(graph) distance 2k from root p and OV, o5, denote the set

of (task) nodes? whose distance from p is exactly 2k. We

2Since G is a bipartite graph, the distance from task p to every
task is even and the distance from task p to every worker is odd.
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now define the following oracle estimator:

QZ(APQ;C) = arggmaXPr[si | Apoks 50V, a0l
2p

where

Ap,Qk = {Azu : (Z,U) € Ep,?k} (12)

We note that 23 (A, 21) uses the exact label information
of OV, o1 separating the inside and the outside of G 2.
Hence one can show that £ (A, 2x) outperforms the opti-
mal estimator §7(A). We formally provide the following
lemma whose proof is given in the supplementary material.

Lemma 1. Consider the Dawid-Skene model with the task
assignment corresponding to G = (V, W, E) and let A de-
notes the set of workers’ labels. For p € V and k > 1,

A(Z(Apar)) = A(Z(Apart2)) - = A(55(A)).
Conversely, if an estimator uses less information than an-
other, it performs worse. Formally, we provide the follow-
ing lemma whose proof is given in the supplementary ma-
terial.

Lemma 2. Consider the Dawid-Skene model with the task
assignment corresponding to G = (V, W, E) and let A de-

note the set of workers’ labels. For any p € V and subset
A C A,

A(s5(A)) = A(5,(4).

On estimating task p, BP at k-th iteration on G is identical
to BP on G, o1, If G 2y, is a tree, then from Property 1, BP
calculates the exact marginal probability of s, given A, o1,
ie., if G, o is atree

éEP ‘= arg max b/’f(sp) = argmax Pr[s, | 4, 2]

Sp Sp

and using Lemmas 1 and 2 with A, 2, C A we have that
(4))
)= AG(Ap2r)  (13)

where we define §* (A, ox) := argmax Pr[s, | A, o).

A(25(Ap2k)) = A(S),
> A5

Consider now a random (¢, r)-regular bipartite graph G,
which is a locally tree-like. More formally, from Lemma 5
in (Karger et al., 2014), if follows that

Pr[G,, o is not a tree] < 3tr ((¢=1)(r-1)%*. a4
n

Hence, by taking the expectation with respect to G and ap-
plying (14) to (13), we get

0 < E[A(35(4)) — A(EP)]

<E[A(Z(Ap2r)) — A(55(Ap2r)] + %(ﬁr)zkﬂ (15)

where the last term in the RHS goes 0 as n — oo if fr =
O(logn) and k = O(loglogn). In addition, from the fol-
lowing lemma, the first term in the RHS also converges to 0
since we set k = ©(loglog n). Hence, this implies (11) and
the existence of the limit of lim,, ., E[A(35(A))] due to
the bounded and non-increasing sequence of A(27 (A, 2x))
in Lemma 1. We complete the proof of Theorem 1.

Lemma 3. Suppose G o1 = (V21 Wpok, Epor) is a
tree of which root is task p and depth is 2k, where every task
except the leaves OV, o, is assigned to | workers and every
worker labels two tasks. For a given p := E[2p,, — 1] > 0,
there exists a constant C,, o such that if ¢ > C, 2, then as
k — o0

|A(25(Ap2r)) — A(35(Ap k)| = 0 (16)

A rigorous proof of Lemma 3 is given in the supplementary
material. Here, we briefly provide the underlying intuition
on the proof. As long as p is strictly greater than 0 and [ is
sufficiently large, the majority voting of the one-hop infor-
mation {A,, : u € M,} can achieve high accuracy. On the
other hand, intuitively the information in two or more hops
is less useful. In the proof of Lemma 3, we also provide a
quantification of the decaying rate of the correlation from
the information on 0V, o, to p as the distance 2k increases.

4.2. Proof of Theorem 2

We note that that KOS is an iterative algorithm where for
each p € Vand k£ > 1, §§Os’k depends on only A, o
defined in (12). In addition, it is clear that MV uses only
one-hop information A, 1 C A, 2. Hence for given A, 21,
the MAP estimator 87 (A, 21) outperforms MV and KOS,
ie.,

A(85(Ap2r)) > max {A(SMY), A} (7

Recall that if G, o, is a tree, we have §EP>’“ = §5(Ap2n)-
Similarly to (15), by taking the expectation with respect to
G, it follows that

E [A(37)]
> E [maX{A(éi\)AV)’A(égos,k)H _ %(ér)2k+1

where the last term goes 0 as n — oo if &r = O(logn) and
k = loglog n. This completes the proof of Theorem 2.

5. Experimental Result

In this section, we evaluate the performance of BP using
both synthetic datasets and real-world Amazon Mechani-
cal Turk datasets to study how our theoretical findings are
demonstrated in practice.
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Figure 1. The average fraction of incorrectly labeled tasks on the synthetic datasets and the real-world Amazon Mechanical Turk datasets;
(a)-(b) the synthetic datasets consisting of 200 tasks with the spammer-hammer (SH) model with 7(0.5) = 7(0.9) = 1/2; (c)-(d)
the synthetic datasets consisting of 200 tasks with the adversary-spammer-hammer (ASH) model with 7(0.1) = 7(0.5) = 1/4 and
7(0.9) = 1/2; (a) Color-similarity comparison (SIM) dataset with 50 tasks and 28 workers obtained in (Karger et al., 2014); (b)
Temporal ordering (TEMP) dataset with 462 tasks and 76 workers obtained in (Snow et al., 2008).

5.1. Tested Algorithms

We compare BP and a variant of BP to two oracle algo-
rithms and several state-of-the-art algorithms in (Dawid &
Skene, 1979; Karger et al., 2011; Liu et al., 2012), each of
which are briefly summarized next.

A practical version of BP. We note that BP, named BP-
True in our plots, requires the knowledge of the prior on
Dy’S, 1.€., reliability distribution 7. However, in practice,
the distribution 7 is typically unknown. Thus, we design a
practical version of BP, which we call EBP (Estimation and
Belief Propagation) that has an additional procedure that
extracts the required statistics on the prior of p,,’s from the
observed data. In EBP, starting with a certain initialization
of labels, it first estimates the statistics of each worker’s re-
liability assuming the labels are true, and updates the labels
via BP using the estimated statistics as the reliability distri-
bution, over multiple rounds in an iterative manner. We will
focus on two versions of EBP with one and two rounds,
respectively, marked as EBP(1) and EBP(2), which is mo-
tivated by our empirical observation that two rounds are
enough to achieve good performance, and the gain from
more rounds is marginal.

Oracle algorithm. Since computing the MAP estimate is

computationally intractable, we instead compute the lower
bound on the error rate, using the following estimator with
access to an oracle. We consider an oracle MAP estimator,
called Oracle-Task, which has an omniscient access to a
subset of the true labels of tasks to label each task. Oracle-
Task estimates task p, uses the true labels of the only tasks
separating the inside and the outside of the breadth-first
searching tree rooted from task p in G. Due to the exact-
ness of BP on a tree in Property 1 and Lemma 1, we can
obtain the lower bound in time O(n2lrlogr).

Existing algorithms. For comparison to the state-of-the-
art algorithms, we test the majority voting (MV), an itera-
tive algorithm (KOS) (Karger et al., 2011)), the expectation
maximization (EM) (Dawid & Skene, 1979)) and an ap-
proach based on approximate mean field (AMF) (Liu et al.,
2012)). Specifically, as the authors in (Liu et al., 2012) sug-
gested, we run EM and AMF with Beta(2, 1) as the input
distribution on workers’ reliability.

We terminate all algorithms that run in an iterative man-
ner (i.e., all the algorithms except for MV) at the maximum
of 100 iterations or with 10~° message convergence toler-
ance, all results are averaged on 100 random samples.



Optimality of Belief Propagation for Crowdsourced Classification

5.2. Performance on Synthetic Datasets

We first compare all the algorithms with synthetic datasets
generated by the set of random (¢, r)-regular bipartite
graphs having 200 tasks from the configuration model
(Bollobas, 1998), where we vary either ¢ or . We randomly
choose worker’s reliability p,, from the spammer-hammer
model with 7(0.5) = 7(0.9) = 1/2 and the adversary-
spammer-hammer model with 7(0.1) = 7(0.5) = 1/2 and
m(0.9) = 1/2, whose results are plotted in Figures 1(a)-
1(b) and Figures 1(c)-1(d), respectively.

Optimality of BP. We observe that BP-True with the
knowledge of the true reliability distribution has the neg-
ligible performance gap from the lower bound of Oracle-
Task, whereas other algorithms have the suboptimal per-
formance and their suboptimality gap depends on ¢, r and
the reliability distribution 7 (see Figures 1(c)). As dis-
cussed in (Karger et al., 2011), we observe a threshold be-
havior at (¢ — 1)(r — 1) = 1/¢* where for small £ and r
MV outperforms KOS but for large ¢ and r KOS is bet-
ter. However, BP-true consistently outperforms all other
algorithms irrespective of the values of ¢ and 7.

Near-optimality of EBP. Even without knowing the true
reliability distribution, EBP with two rounds (EBP(2)),
achieves almost the same performance as BP-True, as
shown in Figure 1(d). Note that MV performs poorly since
the number of workers per task is small and the quality of
workers, i = E[2p,, — 1], is small. Figure 1(d) shows that
EBP with a single round leads to moderate performance im-
provement, but one additional round in EBP(2) provides us
the performance close to optimality.

Tighter lower bound. We recall that a lower bound in
Lemma 1 (i.e., Oracle-Task) was tight enough to show
the exact optimality of BP, and this tightness is demon-
strated in all Figures. Note that a different lower bound
is studied by (Karger et al., 2011) to show just an order-
wise optimality of KOS, which is obtained by the Bayesian
estimator with full information on true workers’ reliabili-
ties, marked as Oracle-Work in our plots. Both Oracle-
Work and Oracle-Task scale well with respect to ¢ but
only Oracle-Work does with 7 as well, thus being a tighter
lower bound (see Figures 1(b) and 1(d)).

5.3. Performance on Real Datasets

We use two real-world Amazon Mechanical Turk datasets
from (Karger et al., 2011) and (Snow et al., 2008): SIM
dataset and TEMP dataset. SIM dataset is a set of col-
lected labels where 50 tasks on color-similarity compari-
son are assigned to 28 users in Amazon Mechanical Turk.
TEMP dataset consists of 76 workers’ labels on 462 ques-
tions about temporal ordering of two events in a collection
of sentences of a natural language. In both datasets, we use

the reliability measured from the dataset as a true work-
ers’ reliability, and we vary ¢ by subsampling the datasets.
Figures 1(e) and 1(f) shows the evaluation results, where
we obtain similar implications to those with the synthetic
datasets, where EBP(2) is close to Oracle-Task and out-
performs all other the state-of-the-art algorithms. In partic-
ular, KOS performs poorly for the TEMP dataset, because
it is under the regime for small ¢, i.e., before the threshold.

6. Conclusion and Discussion

In this paper, we investigate the question of optimality and
computational gap for a canonical scenario for the crowd-
sourced classification where the tasks are binary. Here we
list some interesting theoretical questions left open for fu-
ture research.

First, it would be interesting to tighten the constants in the
error exponent of the upper bound in (10) since the actual
performance of BP is better than predicted by this upper
bound. We provide an oracle estimator that is significantly
tighter than the naive oracle estimators presented in (Karger
et al., 2011). This strong oracle can be numerically eval-
uated, as we showed in our experiments. However, it is
not known how the error achieved by this oracle estimator
scales with problem parameters. A tight analysis of this
lower bound in a form similar to (10) would complete the
investigation of optimality of BP. It has been observed in
(Karger et al., 2011; 2013) that there exists a spectral bar-
rier at (¢ — 1)(r — 1) = 1/q?, where ¢ = E[(2p, — 1)?].
Below the spectral barrier, we observe that the gap between
the simple majority voting and BP becomes narrower as we
step away from this threshold, but a theoretical understand-
ing is lacking.

It is also interesting to generalize our analysis in models
with more practical aspects. First, one can consider multi-
alphabet tasks having more than two classes. In this case,
BP is naturally extended while KOS requires some modifi-
cation (Karger et al., 2013). It is not hard to show the supe-
riority of BP over MV and KOS with the same analysis in
this paper. However, on the optimality of BP over a larger
alphabet, we need new proof techniques to handle multi-
alphabet tasks. Another generalization can be considering
tasks with different difficulty levels. To capture such het-
erogeneity, several generalized models have been proposed
(Raykar et al., 2010; Whitehill et al., 2009; Welinder et al.,
2010; Snow et al., 2008; Sheng et al., 2008; Zhou et al.,
2012; 2015). For these general models, the questions of
the error rate achieved by efficient inference algorithms is
widely open. Finally, in real crowdsourcing systems, adap-
tive design is common. One can decide to collect more
data on those tasks that are more difficult. Tighter analysis
of the error rate can provide guidelines on how to design
such adaptive crowdsourcing experiments.
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