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Abstract—We consider a widely applicable model of resource the average SINR observed between two power updates. The
allocation where two sequences of events are coupled: on anetwork dynamics here are those of the SINR’s on the various

continuous time axis (¢), network dynamics evolve over time. jinks dgriven by the constantly evolving fading gains and by
On a discrete time axis[t], certain control laws update resource .
the transmit powers.

allocation variables according to some proposed algorithmThe . .
algorithmic updates, together with exogenous events out dhe In between the algorithmic updates [at- 1] and [¢], the
algorithm’s control, change the network dynamics, which inturn ~ network dynamics continue to evolve randomly as influenced
changes the trajectory of the algorithm, thus forming a loopthat  py the previous variable settings at tinie— 1]. This turns
couples the two sequences of events. In between the algorfit o 15 introduce substantial difficulty in these systemse Th
updates at [t — 1] and [f], the network dynamics continue to standard way used to avoid this issue is to assume the
evolve randomly as influenced by the previous variable setigs ; y . | .

at time [t — 1]. The standard way used to avoid the subsequent Separation of timescales, i.e., that the network dynamies a
analytic difficulty is to assume the separation of timescake which either much slower or much faster than the algorithm update
in turn unrealistically requires either slow network dynamics frequency. In the former case, either the network condition
or high complexity algorithms. In this paper, we develop an s o)y slowly varying, which limits the applicability of

approach that does not require separation of timescales. lis del the alqorith dat f tv. th .
based on the use of stochastic approximation algorithms whit model, or the algorithm updates very irequently, thus eagy

continuous-time controlled Markov nois&Ve prove convergence _the cost of high Comml_mication _Complexity, if_ each updat_e
of these algorithms without assuming timescale separatioriThis involves message passing, or high computation complexity
approach is applied to develop simple algorithms that solvéhe  otherwise. In the latter case, the algorithm is assumedéo se
problem of utility-optimal random access in multi-channel multi- - 5, 5yeraged network behaviour, i.e., between two algorithm
radio wireless networks. . .
updates, the network dynamics have time to converge to some

|. INTRODUCTION equilibrium. However, most resource allocation algorithm

specially those based on convex optimization, are iterati

) o e
In many resource allocation problems in wireless network nd asymptotically convergent. Assuming timescale separa

ther? are tW(.) sequences of events coupled together. H“Tat’ (}ion, and in particular slow network dynamics, means that th
continuous time axist), network dynamics evolve over time.

: i Igorithm achieves optimality instantaneously. Yet it fien
Such dynamics could be service rate, channel state, bu‘ﬁ%gpossible to achieve exact optimality in finite time. Even f

stlze, ntet_work ttoplollogy, et((:j. ;I'hen, on a d”|screi_te tlme_ ab)l( me target suboptimality gap, instantaneously achieitiisg
[t], certain control laws update resource allocation vargl Eppractical in real systems.

according to some proposed algorithm. These variablesico Throughout this paper, we doot assume timescale sep-

be contentut)n probab|I|t|(;:ts, chl[anR:el h_<t)r|1dlr_19 twgets, ttmlt;ls aration. Instead we take the natural and general framework
POWETS, Toules, Source rates, €fc. AIGorithmic UpCal@eMET oo the network dynamics evolve continuously while the

with exogenous events out of the algorithm’s control, Chﬂanﬁ’esource allocation algorithm updates on discrete peribals

the network dynamics, which in turn changes the traJeCtOﬁfgorithm does not need to achieve optimality in each update

of the algorithm, thus forming a loop that couplgs the "Bor do the network dynamics have to converge between two
sequences of events. Examples of such systems include: algorithm updates. Hence we consider a “lazy” and simple

(a) Adaptive random back-off CSMA systems, where USRsource allocation algorithm under realistic constsiof

adapF the mean of their cqntenUon window .per|0d|c.ally, d ‘omplexity. Nonetheless, in Section I, we prove convecgen
pending on the level of their buffer. The continuous time-ne f the above system under mild sufficient conditions. We

WE_rkhdyn?mlcsdlnclu%e thotshe .Of “S?rz_ bufferts ‘?d aCt.'gg'eonIy assume that the network dynamics can be modelled as a
\Lllvpg;te? urn depend on their periodic contention WIAOW s ntinuous time Markov process, whose generator evolves in

b) Svst ith ol tadi h | wh time as it depends on the parameters updated in the discrete
(b) ystems with power conlrol over fading channel, Whefg,, by the proposed algorithm. The convergence resulbrese
transmitters adapt their powers periodically, dependimng

Ples those obtained in the stochastic approximation titleea
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time rather than just in discrete time. and tends to 0 when time grows. As a consequence, the
The main theorem in Section Il is mathematical in naturelynamics ofm(t) are close to those of a Markov process

yet its applications are widespread due to its generalitye Dwith fixed generator (as if the system state was frozen), and

to space restriction, we limit our application focus to onkas time to converge to its ergodic behaviour. Hence, when

of the central problems in distributed resource allocatidime grows large, we expect that the system behaves as if the

in wireless networks. Further applications are discussed abservation was averaged, i.e., as if in (1), we could replac

[4]. In Section Ill, we apply the framework to address thé€, = h(x,,Y,) by jy ¢ (dy)h(zn,y). We formalize this

problem of utility-optimal scheduling in multi-channel ftiu  intuition below. ‘

radio wireless networks. Based on recent advances ideas_on .

adaptive CSMA algorithms [5], [6], [7], [8], we develop aB' Convergence anaJyS|s

simple CSMA-based distributed scheduling scheme that doe®¢€finet(n) = >~ a,. To conduct the convergence anal-

not require any message passing to achieve utility-opiiynal ysis of the algorithm, we use a continuous-time interpotati
of the system state. Defing as: for alln € N, for all
Il. STOCHASTIC APPROXIMATION WITH CONTROLLED t € [t(n),t(n+ 1)),

CONTINUOUS-TIME MARKOV NOISE

_ t—t(n)
Stochastic approximation algorithms are discrete-time Z(t) = @n + (Tnt1 — 2n) X tn+1) —tn)
stochastic processes whose general form can be written A he following theorem provides the convergence analysis of

VneN, z,41 =2, + anén, (1) the algorithm defined by (1)-(2).

wherez,, is thesystem statat stepn, a,, refers to as thetep- Theorem 1:Let T' > 0, and denote byi*(-) the solution
sizg and¢,, is a random variable representing thieservation on [s,s + T of the following ordinary differential equation
during stepn to update the system state at the next step. Hgade):

we consider very general algorithms where the system state

x,, controls the transition rates of a continuous-time Markov T = /Cm(t) (dy)h(z(t), f(y)), @°(s) = Z(s). 3)
process, and where the observatigractually depends on the Y
behaviour of the latter process during stepSuch algorithms
are referred to as stochastic approximation algorithmé wit lim sup |z(t) —2°(¢)| = 0. (4)
controlled continuous-time Markov noisé/e assume that the ST b€ s, 54T

system stater,, is in RZ.

We have almost surely,

As we expected, the theorem states that when time grows,

A. Algorithms and assumptions the dynamics of the underlying continuous-time process)
Consider the algorithm described by (1) with for alk N, are averaged. A usefull observation is that when the ode

n+1 r = (t)
¢, = h(zn,Y,), and, :/ fm@)dt. () ! /f (@h(=(0), 1))

" represents the evolution of a stable dynamical system, with
(m(t),t = 0) is a stochastic process with values in njque fixed point:*, then we deduce from Theorem 1 that
finite set M, f : M — R¥ is an arbitrary mapping, and gjmost surelyxz,, — z* whenn — oc.
h R{: X_RK e R* is @ bounded continuous function, |t js worth noting that we could also consider constant step-
Lipschitz in the first variable, uniformly over the secondizesq, = q in the algorithm, and study its convergence. The
variable. More precisely, when € [n,n + 1), the process (iference is that we would obtaimeakconvergence only: for

m(t) evolves as a continuous-time Markov process" () example, we would have that farvery small,z,, is close to
of generatoriG*" . For left-handed continuity, we impose that« for Jarge n with high probability.

m(n) = lim¢_,, 1<, m(t). We assume that for anye R%, the
Markov process with generat6¥* is irreducible and ergodic ~ !ll. UTILITY-OPTIMAL DISTRIBUTED SCHEDULING IN
with stationary distributionr?, that the applicationr — G* MULTI-CHANNEL WIRELESS SYSTEMS
is continuous and that — 7% is Lipschitz continuous. In We apply stochastic approximation methods to develop
the following, for all - € RY, (*(dy) denotes the stationary utility-optimal random access in wireless networks withlmu
distribution of ji)lf(mz(t))dt, where m?(-) is a Markov tiple channels and multiple radios. The design of efficient
process of generatd@r=. scheduling schemes in such networks is notoriously chal-
We further assume that, remains bounded, which can bdenging, even with a centralized scheduler, see [9], [10]. |
imposed by projecting (1) to a bounded subseRbf(see [1]). fact it resembles NP-hard graph-coloring problems. Refer t
Finally, we make the usual following assumption on the stefit1] for a survey on multi-channel networks. Scheduling in a
sizes:a,, is a decreasing sequence of positive real numbetistributed manner is even harder, and all existing sahstio
such thata,, ~ ¢/n asn — oo, so that)’ a, = oo and require the use of message passing procedures that can be
>, a2 < oo. heavy, and offer only partial performance guarantees,k&e [
Intuitively, we expect that due to the decreasing stept3]. It has been recently suggested (see [5], [6], [14]) [8]
sizes, the speed of variations of the system state decreabes in single-channel networks, CSMA-based random access



protocols could be modified so as to achieve high efficiendfowever, the proposed framework can be extended to handle
The application of these ideas to multi-channel multi-oadimulti-hop connections (using classical back-pressurasye
systems is non-trivial, requiring careful treatment of thee B. Multi-channel CSMA algorithms

of the various channels and radios.
o CSMA-based multi-access random back-off protocols are

A. Network model and objectives the most popular distributed protocols to share radio nessu

Network model. The network consists in a setof V nodes in wireless networks. One of the major challenges in extendi
and a setC of L links. Denote bys(/) € V and byd(l) € ¥V CSMA protocols to multi-channel systems is channel coordi-
the transmitter and the receiver corresponding to linkVe nation: before initiating a transmission on a given chanael
also use the notation € [ if either v = s(I) or v = d(I). transmitter has to make sure that the corresponding receive
Nodew hasc,(> 0) radio interfaces oradios On each link, is actually ready to receive data on this channel using one
data transmissions can be handled on any channel of @ setf its radios. There have been many proposals to solve this
of C' channels. These channels are assumed to be orthogdssie. We assume hereafter that transmitters and receixers
in the sense that two transmissions on different links amgordinated.
different channels do not interfere. We model interferelmge  Multi-channel CSMA. We propose the following extension
a symmetric boolean matrix € {0,1}/*%, whereA;; = 1if of random back-off CSMA protocols to the case of multi-
link k£ interferes linkl when transmitting on the same channekhannel systems. The transmitter of lihkasC independent
and 4;; = 0 otherwise. A node uses a radio interface tBoisson clocks, ticking at rates.,, ¢ € C. When a clocke
transmit or receive data on a given channel. Denotelzpy ticks, if the transmitter does have an available radio of i$ i
the rate at whichs(I) can send data td(l) on channek. already transmitting or receiving on chanmrelt does not do

Feasible schedules and rate region. Interference and the @nything. Otherwise, it senses channeand checks whether
limited number of radios at each node impose some cdfi€ receiver has an available radio. If the channel is idteiin
straints on the set of possible simultaneous and succes$ffi receiver can receive data, it starts a transmission amet
transmissions on the various links and channels. We captéire2nd keeps the channel for an exponentially distributed
these constraints with the notion of schedule. A scheddigriod of time of averaggu.,. Define \; = (A, c € C)
m € {0,1}°%L represents the activities of various links o@Nd /.1 = (pai,¢ € C), and denote by CSMA(, 1) the
different channelsin,, = 1 if and only if link I is active on @POve access protocol. We also introduce= (Al € £)

channele (i.e., s(1) is transmitting on channe)). A schedule @ndp = (1,1 € £). When each link runs CSMAQ.;; 1),
m is feasibleif all involved transmissions are successful, i.ethe network dynamics and performance can be analyzed using
if for all k,1 ¢ £ and allv € V, the theory of reversible Markov chains. More precisely, we

have
(mep =1=m¢y) = (A =0) (Interference constraint) N _ .
Proposition 1: Letm™#(t) be the active schedule at time

Y. Y ma<c (Radiointerface constraint) rhen ;A e (t), ¢ > 0) is a continuous-time reversible Markov

leLivel eeC chain whose stationary distributiar# is given by

We define by M < {0,1}¢* the set of theM feasible I et fier)™et
schedules. We are now ready to define thee regionT" as VmeM, mnh = leLecc il —,
the set of achievable long-term throughpgts= (v;,1 € L) 2nem Iz, cecActpte)™
on the various links: where by conventiof],_,(-) = 1. Moreover, the link through-

" puts are given by

r= {’y :3m € [0,1] ,mgﬁm =1, Vel = S Y maka
meM ceC
Vi€Lim< Z Tm chchl}' () Proof. To prove the above result, we first consider free

_ meM - eeC _process(fMH(t),t > 0) with values inN“*L. This process
In the above expression,, may be interpreted as the fractiong gptained assuming that link initiates transmissions on
of time the schedulen is activated. channelc of exponentially distributed durations with mean

Maximizing network utility. When the transmitters arey,, according to a Poisson process of intensity without
saturated (i.e., they always have packets to send), thetdlgie accounting for the interference and radio interface cairss.
is to design a scheduling algorithm maximizing the network{*-#(¢),t > 0) then represents the user population€’is L
wide utility. Specifically, letU : R — R be an increasing, independent)M /M /oo queues, and hence is a continuous-
strictly concave, differentiable objective function. Westv time reversible Markov chain whose stationary distributie
to design an algorithm solving the following optimizatiomproportional toé*#, where

problem: Vm e NOXL  ehi = H (et fter)™ .
max  YiecU(y), st ~el. (6) lEL,cEC

We denote byy* = (v/,1 € £) the optimizer of (6). Note that Now (m*#(t),t > 0) is obtained from(f*#(t),t > 0)
the network is assumed to handle single-hop data connsctigast truncating the state space Ad. It is then well-known



from the classic theory of reversible processes (see [1#)given by: for allg,y € R* x RE,
that (m*#(¢),t > 0) is also a continuous-time reversible
Markov chain whose invariant measures coincide with those hi(g,y) =

= U~ W(a)/V) = ).
of (fA#¥(t),t > 0), and the proposition follows. O W’(ql)( (Wia)/V) =)

C. Distributed utility-optimal scheduling schemes For any vectog € RZ, we denote byr? the distribution on\
Algorithm description. In the previous subsection, we haveesulting from the dynamics of the CSMA, 1..;) algorithms,
proposed multi-channel CSMA protocols whose parametarere for alll € £ and allc € C, et = Reyexp(W(q))).
(Aet, pter, ¢ € L) for link [ are fixed. Next, we propose anin other words,
algorithm that dynamically adapts these parameters so as to
approximately solve the  utility-maximization problem (6) ', .\«  q_ exp(Xiez cecMerBaW (q1)) @
This algorithm in turn is a stochastic approximation algori L 3 nem®P (s cecna RaW (@)
with controlled Markov noise. Time is divided infoamesof
fixed durations, and the transmitters of each link update theWe can now easily verify that the assumptions made in
CSMA parameters (i.e.\., 1e;) at the beginning of each Section Il are satisfied. First note that in view of the regtja
frame. To do so, they maintain a virtual queue, denoted oy functionsWW and U, h is a bounded Lipschitz continuous
q[n] in framen, for link [. The algorithm operates as follows:function. Then it is clear that the generator @f*(t) is
a continuous function of;, and thatq — 7 is Lipschitz
continuous.
UO-MC-CSMA (Utility-Optimal Multi-Channel CSMA) Convergence and Optimality. We now analyze the conver-
i ) ) gence and optimality of UO-MC-CSMA. For any link we
1) During frame n, the transmitter of link ! runs define v,[n] = (Z?;Ol Sy[i])/n the throughput achieved by
CSMA(.1[n], pu.1[n]), and records the surfii[n] of the |iny 1 yp to framen. To prove the convergence and optimality

services received during this frame over all channels; of UO-MC-CSMA, we will need the following assumption.
2) At the end of framen, it updates its virtual queue '

according to (A1) If ¢° € REL solves, for alll € £, W(g)) =
! q’ R.)), theng™in < ¢ < ¢, for all
A, _ W(ql[n]) VU( m T Zcmcl cl)s q S q = q ,
1] = _In (g (2

il +1) = [aln] + gt (v () g
qm For example, if the utility functior/ is such that/’(0) <
- Sz[n]ﬂ s 400, then (A1) is satisfied wheg™® < W~1(VU’(CRuax))

qmlll

~and g™ > WL(VU'(0)), where Ryax = maxc; Re.
and sets the\.;[n + 1]'s and uq[n + 1]'s such that their The next theorem states the convergence of UO-MC-CSMA
products are equal texp{ R W (qi[n + 1])}. towards a point that is arbitrarily close to the utility-opizer.

Theorem 2:Under (A1), for any initial conditior[0], UO-

In the above algorithmy : N — R is a decreasing step sizeMC-CSMA converges in the following sense:
function satisfying) ", a, = cc and)", a2 < oo; W : R* — . .
R+ is a strictly increasing and continuously differentiable  lim g[n] = g, and lim ~[n| = ~,, almost surely
function, termed theveight function V, ¢g™in, ¢max(> ¢™min)
are positive parameters, arjd? = max(d, min(c,-)). As wherev, andg, are such thaty,, ) is the solution of the
shown later on}/ controls the accuracy of the algorithm. following convex optimization problem (ovey and r):

The UO-MC-CSMA algorithm is a stochastic approxima-
tion algorithm with controlled continuous-time Markov Bei max VZ U(y) — Z T (log T — 1)

as considered in Section Il. The equivalence is obtained as el meN
follows. z,, = q[n] € R’ represents the virtual queues; st. v < Z szmcchl, YmemTm = 1. (8)
Y, = S[n] € RL represents the service received on each link meM  ceC

in framen (we haveK = L); m(t) is the process recording the

active schedule at timeunder the algorithm, and is obtainedrurthermore UO-CSMA approximately solves (6) as

in framen as the Markov process™-* (t) where for alll and

¢, Aoy @andy are such that their product ésp(Ro W (qi[n]); | Z (Ulrd) —UGD)| < log(M) + 1. ©)

S[n] = (Si[n],...,Sr[n]) with for all [, = - 1%
n+1
Sifn] = / chl(t)Rcldtv vi, Proof. Step 1. Averaging\Ve first use the analysis of Section
"o eeC Il to show that in the algorithm we can average the received

hence the functiorf : M — R is given by: for allm € M, servicesS[n]. Remark that if¢?(dy) is the stationary distri-
film) =3 maRe; finally, the functionh : RF x RF — RE bution of S[n] assuming that the virtual queues are fixed to



g, we have by ergodicity: for all € £, almost surely,

/ Ca(dy)hi(av)

pZ

mm <ql <qmax}

W' (a)

n+1
N / ngl(u)Rcldu}

— W(Ql)
e

lim
P—oo

[U ,1(W(qz))

1 {qmin <q1 <qrnax}

W' (a)

w4 (given in (7)) solves (13) and (15). Now the sub-gradient
algorithm corresponding to (12) (when accounting for (1d))

(U’ (5)- z s, Zmdfzd> (16)

Note that (16) is equwalent to (10) provided that thél)'s
remain in [p™in,
fixed points of (16) actually belongs fo™®,
since (8) is a strictly convex optimization problem, (16heo
) verges to its unique equilibrium,, and hence (10) converges
to g, such that for alll € £, W(gx;) = v.,;. Using Step

v™ax] But thanks to Assumption (Al), the
22X Finally,

R a 1, we conclude that almost surelyjn] converges taz,. The
- Ph_l};o P J, chz(U)Rcldu} convergence ofy[n] to v, follows.
¢ To prove the inequality (9), we just note that (6) is equiva-
~ Lggmingg <qmex) [U/1(W(QI)) _ Z x4 Zm R l] lent to the following optimization problem:
/ m C cl |-
W (ql) v meM c max VE[GLU(’}/Z)

Now, denote byg the continuous interpolation af[n] (see s.t. v < Z memcchz, Z mm = 1. (17)
Section 1l). Fixs > 0. Denote byg® the solution of the meM meM

following ode, for alll € L,

Ut (Wz(qz)/V) - Z wd, Z Mo R

meM c
1 min max
{gmin<q <gmax}
T 19w
with ¢*(s) = q(s). Then applying Theorem 1, we have that,[2]
forall T > 0,

K]
lim sup |q(t) —¢°(t)|=0 a.s. (11)

$TO0 te[s,s+T) [4]
Now if the ode (10) is stable and has a unique fixed point
g+, then we would also haviém,, ., g[n] = g, a.s.. [5]
Step 2.To complete the convergence proof, we show, using
a similar technique as in [5] that (10) may be interpreteg)
as a sub-gradient algorithm (projected on a bounded irfjerva
solving the dual of the convex problem (8). The Lagrangla%

of (8) is given by
(Zyl Z 7'rmz?ncchl [8]

ZVU Y)—viv)
leL meM c

leL
(D =

— Z T 1og7rm—1
meM meN

Then, the Karush-Kuhn-Tucker (KKT) conditions of (8) ar¢10]
given by, for alll € £, andm € M,

VU'(y) = wu,

_1Ogﬂ'm +ZVIZmCZRcl —n= 07
l c
Z 7"'1712:7nclficl) = O, v > Oa (14)

meM c

X (Y m—1)=0,

meM

Introduce the variableg such that for all, ¢ = W~1(»;), and
the bounds/™i* = W (g™in), p™ax = ¥/ (g™a*). By choosing

n=1og (- exp(>_ Wla)maRa)),
m l,c

L(~v,mv,n)=

El

(12)

(13)
[12]

[11]

vp X (’Yz - 113

(15)
[14]

= [15]

Eqg.
fact that the entropy)
log M. The proof of Theorem 2 is completed.

(9) is obtained by comparing (8) and (17), and using the
mm log 7, is always bounded by
O

REFERENCES

H. J. Kushner and G. G. YirStochastic Approximation Algorithms and
Applications Springer-Verlag, 1997.

V. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint
Hindustan Book Agency (Cambridge University Press), 2008.
——, “Stochastic approximation with controlled markowise,” Systems
and control lettersvol. 55, pp. 139-145, 2006.

A. Proutiere, Y. Yi, T. Lan, and M. Chiang, “Resource akldion over
network dynamics without timescale separatidPrinceton Univ. Tech.
Report, www.princeton.edu/ chiangm/notimescalesepgrdf 2009.

L. Jiang and J. Walrand, “A distributed CSMA algorithnr finroughput
and utility maximization in wireless networks,” ifProceedings of
Allernton ConferenceSep. 2008.

J. Shin, D. Shah, and S. Rajagopalan, “Network adialthgorem: An
efficient randomized protocol for contention resolutioim, Proceedings
of ACM Sigmetrics2009.

J. Lee, J. Lee, Y. Vi, S. Chong, A. Proutiere, and M. Chiafigiple-
menting utility-optimal CSMA,” inProceedings of Allerton conference
2009.

J. Liu, Y. Yi, A. Proutiere, M. Chiang, and V. H. Poor, “Taxds utility-
optimal random access without message passiirgless Communi-
cations and Mobile Computing, Wileto appear.

M. Alicherry, R. Bhatia, and E. L. Li, “Joint channel agsiment
and routing for throughput optimization in multi-radio wiess mesh
networks,” inProceedings of ACM Mobicon2005.

M. S. Kodialam and T. Nandagopal, “Characterizing thpacity region
in multi-radio multi-channel wireless mesh networks,” Rmoceedings
of ACM Mobicom 2005.

P. Kyasanur, J. So, C. Chereddi, and N. Vaidya, “Muftaenel mesh
networks: Challenges and protocol$EEE Transactions on Wireless
Communicationsvol. 13-2, no. 2, pp. 30-36, 2006.

X. Lin and S. Rasool, “A distributed joint channel-agsinent, schedul-
ing and routing algorithm for multi-channel ad hoc wirelestworks,”
in Proceedings of IEEE Infocon2007.

S. Merlin, N. H. Vaidya, and M. Zorzi, “Resource alloicat in multi-
radio multi-channel multi-hop wireless networks,” Proceedings of
IEEE Infocom 2008.

J. Ni and R. Srikant, “Distributed csma/ca algorithnm faichieving
maximum throughput in wireless networks,” iBroceedings of the
Information Theory and Applications Workshd&D09.

F. Kelly, Reversibility and Stochastic Networks Wiley, Chichester,
1979.



