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Abstract—Delay-capacity tradeoffs for mobile networks have
been analyzed through a number of research work. However,
L évy mobility known to closely capture human movement pat-
terns has not been adopted in such work. Understanding the
delay-capacity tradeoff for a network with L évy mobility can
provide important insights into understanding the performance
of real mobile networks governed by human mobility. This paper
analytically derives an important point in the delay-capacity
tradeoff for L évy mobility, known as the critical delay. The
critical delay is the minimum delay required to achieve greater
throughput than what conventional static networks can possibly
achieve (i.e.,O(1/

√
n) per node in a network with n nodes). The

Lévy mobility includes Lévy flight and Lévy walk whose step
size distributions parametrized by α ∈ (0, 2] are both heavy-
tailed while their times taken for the same step size are different.
Our proposed technique involves (i) analyzing the joint spatio-
temporal probability density function of a time-varying lo cation
of a node for Lévy flight and (ii) characterizing an embedded
Markov process in Lévy walk which is a semi-Markov process.
The results indicate that in Lévy walk, there is a phase transition
such that for α ∈ (0, 1), the critical delay is alwaysΘ(n

1

2 ) and
for α ∈ [1, 2] it is Θ(n

α

2 ). In contrast, L évy flight has the critical
delay Θ(n

α

2 ) for α ∈ (0, 2].

I. I NTRODUCTION

Since the seminal work by Gupta and Kumar [1] on the
capacity of wireless networks, delay and throughput tradeoffs
for wireless networks have been extensively studied for vari-
ous mathematical techniques, scheduling algorithms, channel
models, mobility models and physical layer techniques. The
work by Grossglauser and Tse [2] showed that the per-node
throughput remains constant (Θ(1)) when node mobility is
used for communication. This result is surprising because
Gupta and Kumar [1] had previously shown that the per-
node throughput (O(1/

√
n)) in wireless networks with no

mobility diminishes as the number of nodesn increases. This
throughput gain is achieved at the cost of larger delays.

The amount of delay that a network needs to sacrifice to
guarantee a given throughput has been studied under various
mobility models [3]–[5]. In particular, Sharmaet al. [6]
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(a) Brownian motion (b) Lévy mobility (c) Random waypoint

Fig. 1. Sample trajectories of (a) Brownian motion, (b) Lévy mobility and
(c) random waypoint.

studied the minimum delays required to achieve more per-
node throughput thanΘ(1/

√
n)1 under various mobility mod-

els including i.i.d., random waypoint, random direction and
Brownian motion. This minimum delay is calledcritical delay.
However, although the work provides a nice framework for
studying delay-capacity scaling for wireless networks under
a family of random walk models, the practical values of
these mobility models are limited. While these models are
simple enough for mathematical tractability, they do not reflect
realistic mobility patterns commonly exhibited in real mobile
networks.

Humans are a major factor in mobile networks as most
mobile nodes or devices (smartphones and cars) are carried or
driven by humans. Recent studies [7]–[9] on human mobility
show that step size distributions2 are heavy-tailed wherea step
is defined to be the straight line trip of a moving object (e.g.,
particles or humans) from one location to another without
a directional change or pause. These mobility patterns are
accurately modeled by Lévy process [10].

Lévy mobility is a random walk mobility whose step size
distribution is parametrized byα ∈ (0, 2] and is heavy-tailed
except in the extreme case ofα = 2. For α ∈ (0, 2), the
distribution is well approximated by a power-law distribution
1/z1+α where z is a step size. Forα = 2, the step size
conforms to Gaussian distribution.3 Intuitively, such a random
walk contains many short steps and a small yet significant
number of exceptionally long steps. With different values of α,
the movement patterns of Lévy mobility models are widely
different. Smallerα induces a larger number of long steps.

1As [1] showed,Θ(1/
√
n) is the maximum throughput that wireless

networks relying on naive multi-hop transmissions can achieve without the
help of node mobility.

2Step size is often referred to as flight length in some literatures.
3Lévy mobility becomes Brownian motion in the extreme case of α = 2.
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This type of mobility patterns is significantly different from
Brownian motion and random waypoint as illustrated in Fig. 1.
In the literature, there are two types of Lévy mobility models
for classification:Lévy flight and Lévy walk. In Lévy flight,
every step takes aconstant timeirrespective of its step size
and in Lévy walk, it takes aconstant velocity. Lévy flight and
Lévy walk can show the same pattern of traces but their time
durations taken to have such traces are essentially different.
Intuitively, Lévy flight can be easily slotted while Lévy walk
is not.

Unfortunately, understanding tradeoffs between throughput
and delay under Lévy mobility models is technically very
challenging and underexplored. Unlike the other random walk
models permitting mathematical tractability, the Lévy process
is not very well understood mathematically despite significant
studies on Lévy process in mathematics and physics. Thus,
the conventional techniques [5], [6] used to study delay-
capacity tradeoffs cannot be applied to Lévy mobility mod-
els, especially to Lévy walk which has high spatio-temporal
correlation. In more specific, since Lévy walk is not eligible
for discretization for Markovian analysis, its mathematical
characteristics such as joint spatio-temporal probability density
function (PDF) are hardly known. Due to such a difficulty,
analyzing Lévy walk is generally considered to be very
challenging.

Our main contribution is to analytically derive important
tradeoffs between delay and capacity for both Lévy mobility
models. An important point in this tradeoff is the “critical
delay” which is the minimum delay for a mobile network
to obtain a larger throughput thanΘ(1/

√
n). Our technique

involves (i) analyzing the joint spatio-temporal PDF of a time-
varying location of a node and the diffusion equation of the
node for Lévy flight and (ii) characterizing an embedded
Markov process inherent in Lévy walk which is a semi-Markov
process. Since a different value ofα induces a different
mobility pattern, it also induces a different critical delay.
Below we summarize our main results.

Mobility α Critical Delay

Lévy walk α ∈ (0, 1) Θ(
√
n)

α ∈ [1, 2] Θ(nα/2)

Lévy flight α ∈ (0, 2] Θ(nα/2)

Given that many human mobility traces are shown to have
values ofα between 0.53 and 1.81 [7], according to our results,
mobile networks assisted by human mobility have critical
delays betweenΘ(n0.27) andΘ(n0.91). Note that our results
give much more detailed prediction of the critical delay for
such mobile networks depending onα while Brownian motion
and random waypoint always showΘ(n) andΘ(n0.5) for their
critical delays [6].

The rest of the paper is organized as follows. We first
overview a list of related work in Section II and introduce our
system model in Section III. More details of Lévy mobility
model parameterized byα are described in Section IV, and
the critical delays under Lévy flight and Lévy walk are
investigated in Sections V and VI, respectively. Finally, we
provide a high level interpretation of our main results in
Section VII and concluding remarks in Section VIII.

II. RELATED WORK

Gupta and Kumar [1] showed that the per-node throughput
of random wireless networks withn static nodes scales as
a function ofO(1/

√
n) and proposed a scheme achieving

Θ(1/
√
n logn). The result for static wireless networks was

later enhanced toΘ(1/
√
n) by exercising individual power

control [11], [12]. Grossglauser and Tse [2] proved that a
constant per-node throughput is achievable by using mobility
when the nodes follow ergodic and stationary mobility mod-
els. This result disproved the conventional belief that node
mobility can negatively impact network capacity as it causes
connectivity breakup and channel quality degradation.

Many follow-up studies [3], [4], [13]–[17] have been de-
voted to understand, characterize and exploit the tradeoffs
between throughput and delay. Especially, the delay required
to obtain the constant throughputΘ(1) has been later studied
under various mobility models [4], [16]–[18]. The studies
provided that the delay to obtainΘ(1) of per-node throughput
becomesΘ(n) for most mobility models such as i.i.d. mobility,
random direction, random waypoint and Brownian motion
models.

Another interesting question that has attracted researchers is
what should be the minimum delay to achieve asymptotically
higher throughput thanΘ(1/

√
n), the per-node throughput of

static networks. This has been studied under the notion of
critical delay [5], [6] for two families of random mobility
models:hybrid random walkandrandom direction. The hybrid
random walk model splits the network of size 1 withn2β cells
and further splits a cell inton1−2β subcells forβ ∈ [0, 1/2].
Then, a node moves to a random subcell of an adjacent cell in
every unit time slot. In this model, i.i.d. mobility corresponds
to β = 0 and random walk mobility corresponds toβ = 1/2.
For anyβ ∈ [0, 1/2], critical delay is proved to beΘ(n2β). The
random direction model chooses a random direction within
[0, 2π] and moves to the selected direction with a distance of
n−γ with a velocity n−1/2 for γ ∈ [0, 1/2]. In this model,
random waypoint and Brownian motion are represented with
γ = 0 andγ = 1/2, respectively. The critical delay is proved
to beΘ(n1/2+γ).

III. M ODEL DESCRIPTION

A. System Model

We consider a wireless mobile network indexed byn,
where in then-th network,n nodes are distributed uniformly
on a completely wrapped-around squareS(n) whose width
and height scale as

√
n and the density is fixed to 1 with

increasingn.4 Without loss of generality, we set the width
and the height of the squareS(n) as

√
n. We assume that

all nodes are homogeneous in that each node generates data
with the same intensity to a per-source destination. The packet
generation process at each node is assumed to be independent
of node mobility.

A source-to-destination packet can be delivered by either
direct one-hop transmission or over multiple hops, sayk hops,

4This model is often referred to as an extended network model.In another
model, called a unit network model, the network area is fixed to 1 and the
density increases asn while the spacing and velocity of nodes scale as1/

√
n.
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using relay nodes. We call itk-hop relay transmission. We
assume that all nodes can serve as relay nodes for other source
nodes and the nodes serving as relay nodes can only forward
packets rather than replicating packets (not to overproduce the
same packets in the network).

To model interference in wireless networks, we use the
protocol model as in [1], under which nodes transmit packet
successfully at a constant rateW bits/sec, if and only if the
following is met: let Xi(t) (∈ R

2) denote the location of
node i (i = 1, . . . , n) at time t (≥ 0). For a transmitteri,
a receiverj and every other nodek 6= i, j transmitting
simultaneously,

d(Xk(t),Xj(t)) ≥ (1 + ∆) d(Xi(t),Xj(t)),

whered(x,y) denotes the Euclidean distance between loca-
tionsx,y ∈ R

2, and∆ is some positive number.
A packet can be delivered through a scheduling scheme

which consists ofreplication or forwarding. We assume that
only source nodes replicate packets and all other relay nodes
forward them. As the names imply, replication copies a
packet and the packet transmitter keeps the packet, whereasin
forwarding the transmitter does not keep the original packet
after successful transmission. This selective replication and
forwarding depending on the node type are often applied to
suppress the overflow of redundant packets in the network.
Packets are delivered in two ways:neighbor captureandmulti-
hop capture. In neighbor capture, using mobility, relay or
source nodes are located within the communication range of
the destination. In the multi-hop capture, a source establishes a
multi-hop path to the destination and delivers the packets over
the path. We assume a fluid packet model [19] so that the
delivery can occur immediately even in the case of multi-hop
capture because the transmission delay is negligible compared
to the delay from node mobility. We denote byΠ the class of
all scheduling schemes conforming the descriptions above.

B. Performance Metrics

The primary performance metric in many networking sys-
tems is per-node throughput measured by the long-term aver-
age of received packets aggregated over nodes:

Definition 1 (Per-node throughput):Let λπ(n) denote the
per-node throughput in then-th network under a scheduling
schemeπ ∈ Π. It is then given by

λπ(n) , lim inf
t→∞

1

n

n
∑

i=1

λπ:i(t)

t
,

whereλπ:i(t) is the total number of bits received at a desti-
nation nodei up to timet underπ.5

Another important metric is average delay:

Definition 2 (Average delay):Let Dπ(n) denote the aver-
age delay in then-th network under a scheduling scheme
π ∈ Π. It is then given by

Dπ(n) , lim
k→∞

1

n

n
∑

i=1

1

k

k
∑

j=1

Dπ:(i,j),

5For simplicity, we omit the subscriptπ in λπ(n) unless confusion arises.

whereDπ:(i,j) is the individual packet delay that a packetj
experiences to arrive at a destination nodei from its source
node underπ.

We give special attention to the notion of critical delay, first
introduced in [6]:

Definition 3 (Critical delay):The critical delay in then-
th network, denoted byCΠ(n), is the minimum average delay
that must be tolerated under a given mobility model to achieve
a per-node throughput ofω(1/

√
n), i.e.,

CΠ(n) , inf
{π∈Π:λπ(n)=ω(1/

√
n)}

Dπ(n).

Per-node throughputΘ(1/
√
n) is achievable by a schedul-

ing scheme in static multi-hop networks [1]. Since node
mobility can increase per-node throughput at the cost of larger
delay, the critical delay quantifies the amount of delay thata
network should sacrifice to achieve the guaranteed “baseline”
per-node throughput. It can be used as a simple, yet useful
metric for a mobility model, representing how sensitive the
delay is to increase per-node throughput.

Computing critical delay consists of multiple steps. We
start by following the initial step in [5], [6] which connects
critical delay to the first exit time. LetD(n) denote a disc
within the squareS(n) whose radius scales asΘ(

√
n). Critical

delay can simply be regarded asthe maximum time duration
that a node cannot exit from the discD(n) with probability
approaching 1 asn goes to∞. In our extended network
model, the average distance from a source node to a destination
node isΘ(

√
n) when they are uniformly distributed onS(n).

Therefore, if nodes travel up to a distanceO(
√
n), for a certain

time duration, the distance between a source or a relay and
a destination still remainsΘ(

√
n) on average which results

in O(1/
√
n) per-node throughput (see Lemma 1). Thus, it

is obvious that a network aiming at obtainingω(1/
√
n) per-

node throughput must allow a delay which is no less than the
maximum time duration that the first exit of a node from the
discD(n) does not occur with probability approaching 1. This
insight can be formally described with the notion of the first
exit time:

Definition 4 (First exit time):Let Xi(0) = x. The first exit
time for a disc of a radiusr, denoted byT (r), is defined as

T (r) , inf{t ≥ 0 : Xi(t) /∈ B(x, r)},

whereB(x, r) denotes the set of pointsy in S(n) such that
d(x,y) ≤ r.

Without loss of generality, we set the radius of the discD(n)
as cd

√
n wherecd is a constant in the range(0, 1/2). Then,

critical delayCΠ(n) can be obtained by

CΠ(n) = sup
{

t(n) : lim
n→∞

P{T (cd
√
n) > t(n)} = 1

}

.

Lemma 1 ([1], [5]): Suppose that on average each packet
is relayed over a total distance no less thanΘ(

√
n) in an

extended network model. Then, the per-node throughputλ(n)
scales asO(1/

√
n).
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IV. M OBILITY MODELS: L ÉVY FLIGHT AND L ÉVY WALK

In this section, we formally defineLévy mobility model:
Lévy flight and Ĺevy walk.

Lévy flight and Lévy walk processes are treated separately
in the literature [20]–[22]. Lévy flight takes aconstant timefor
any step irrespective of its step size, whereas Lévy walk takes
a constant velocityfor every step. Thus, in Lévy walk, the
time taken for each step is proportional to the step size. The
distinction between Lévy flight and Lévy walk is often made
based on the speeds of their actual processes. Lévy flight isa
“fast” mobility model which can reach its next destination in a
constant time no matter how far it is. In a similar context, L´evy
walk falls under a “slow” mobility model. An experimental
velocity model suggested as a function of step size in [7]
verifies that a human mobility lies in between Lévy flight and
Lévy walk. For convenience, we use Lévy mobility model to
indicate both of Lévy flight and Lévy walk, unless explicitly
stated.

Let Z be a random variable denoting the step size under
Lévy mobility model. Then,Z is generated from a random
variableŻ having the Lévyα-stable distribution [23] by the
relationZ = |Ż|. The PDF ofŻ is give by

fŻ(z) =
1

2π

∫ ∞

−∞
e−iztϕŻ(t)dt, (1)

where ϕŻ(t) , E[eitŻ ] is the characteristic function oḟZ
and is given byϕŻ(t) = e−|ct|α . Here, |c| > 0 is a scale
factor which is a measure of the width of the distribution,
and α ∈ (0, 2] is a distribution parameter and specifies the
shape (i.e., heavytail-ness) of the distribution. The stepsizeZ
for α ∈ (0, 1) has infinite mean and variance, whileZ for
α ∈ [1, 2) has finite mean but infinite variance. Forα = 2, the
Lévy α-stable distribution reduces to a Gaussian distribution
with zero mean and varianceσ2 = 2c2, and consequently the
step sizeZ has finite mean and variance.

Due to the complex form of the distribution, the Lévyα-
stable distribution forα ∈ (0, 2) is often given as a power-law
type of asymptotic form, closely approximating the tail part
of the distribution [23]:

fŻ(z) ∼
1

|z|1+α
. (2)

For mathematical tractability, in our analysis we use the
asymptotic form (2) instead of the exact form (1) forα ∈
(0, 2) while using the exact form (1) forα = 2. The form
(2) is known to closely approximate (1) and several papers
in mathematics and physics, e.g., [20], [24], analyze Lévy
mobility using form (2). For the range ofZ, since we use
the extended network model, the step sizeZ is assumed to
have a lower bound at 1 and an upper bound at

√
n, i.e.,

P{1 ≤ Z ≤ √
n} = 1.6 Thus, the complementary cumulative

distribution function (CCDF) ofZ becomes P{Z > z} = 1
for z < 1 and P{Z > z} = 0 for z ≥ √

n. For z ∈ [1,
√
n),

6The bounds are chosen equivalently to the lower bound at1/
√
n and the

upper bound at1 for the step size in the unit network model [6].

we have

P{Z>z}=
{

c(n) ·
(

1
zα − 1

(
√
n)α

)

for α ∈ (0, 2),

c(n) ·
(

erf(
√
n√
2σ

)−erf( z√
2σ
)
)

for α = 2.

(3)

Here, erf(·) is the error function defined aserf(x) ,
2√
π

∫ x

0
exp(−t2)dt, andc(n) is defined as7

c(n) ,

{

(1− 1
(
√
n)α

)−1 for α ∈ (0, 2),

(erf(
√
n√
2σ

)− erf( 1√
2σ
))−1 for α = 2.

Note that asn goes to∞, the CCDF P{Z > z} for z ≥ 1
goes to1/zα for α ∈ (0, 2).

In our analysis, we use the following assumptions on the
Lévy mobility model: (A1) the time taken for each step in
the Lévy flight is set to 1, and (A2) the velocity taken for
each step in Lévy walk is set to 1. Note that as long as these
two metrics are constant, the scaling property of critical delay
remains the same, which justifies our assumptions.

V. CRITICAL DELAY ANALYSIS FOR L ÉVY FLIGHT

In this section, we will show that the critical delayCΠ(n)
under Lévy flight with a distribution parameterα ∈ (0, 2]
scales asΘ(n

α

2 ) (Theorem 1). In Section V-A, we explain
technical challenges and our approach for proving Theorem 1.
In Section V-B, we prove Theorem 1 by showing that the upper
bound onCΠ(n) scales asO(n

α

2 ) (Lemma 3), and that the
lower bound onCΠ(n) scales asΩ(n

α

2 ) (Lemma 4).

A. Technical Approach

We begin with deriving a relation between the first exit
time of a 2-dimensional random process and the one for its
1-dimensional projected process. We then describe trapping
phenomenon in a diffusion process that have a direct connec-
tion to the first exit time of a 1-dimensional random process.

It is clear from Definition 4 that the statistical proprieties
of the first exit time do not depend on the choice of node
indexi. Thus, we omit the node indexi in the rest of the paper.
DenoteX(t) = (Xx(t), Xy(t)) and consider the projected
processes{Xx(t)}t≥0 and{Xy(t)}t≥0 ontox-axis andy-axis,
respectively. We define for the projected processes the firstexit
time similarly to Definition 4:

Tx(r) , inf {t ≥ 0 : |Xx(t)−Xx(0)| ≥ r} ,
Ty(r) , inf {t ≥ 0 : |Xy(t)−Xy(0)| ≥ r} .

Since the event{|Xx(t) − Xx(0)| ≥ r} implies the event
{d(X(t),X(0)) ≥ r}, we obtain

P{Tx(r) ≤ t} ≤ P{T (r) ≤ t}. (4)

7To be precise,c(n) is also a function ofα, i.e., c(n) = c(n,α). Since
we focus on scaling properties with respect ton for a fixedα, we omit the
argumentα in c(n,α) for notational simplicity. By the same reason, in the
rest of the paper, we emphasize onlyn in all variables that depend on both
n andα.
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In addition, it is clear that

P{T (r) ≤ t} ≤ P{Tx(r/
√
2) ≤ t or Ty(r/

√
2) ≤ t}

≤ 2P{Tx(r/
√
2) ≤ t}, (5)

where the second inequality comes from the union bound and
the symmetry of node motion. Combining (4) and (5), we have
for all t ≥ 0,

P{Tx(r) ≤ t} ≤ P{T (r) ≤ t} ≤ 2P{Tx(r/
√
2) ≤ t}. (6)

Our technical approach is mainly based on (6), and is to
bound the first exit time distribution for 2-dimensional Lévy
flight by the one for the corresponding 1-dimensional projected
process{Xx(t)}t≥0. We henceforth study the first exit time
distribution for the process{Xx(t)}t≥0.

The first exit time analysis for 1-dimensional random pro-
cesses has been intensively studied in physics and mathemat-
ics, e.g., [25]. Specifically, trapping phenomenon (of a diffus-
ing particle) in physics and its related theories have a direct
connection to our first exit time problem as explained in the
following: consider a particle that diffuses in a finite interval
[0, 2r] (⊂ R) having trapping boundaries atx = 0, 2r. Let
L(t) (∈ R) be a random variable denoting the location of the
particle at timet. The particle is assumed to be initially located
at L(0) = r, and eventually it is trapped at either of both
boundaries with probability 1. Upon the particle is trapped,
it disappears in the interval. We call the state of the particle
survival stateuntil the particle is trapped and disappears. By
convention, we letL(t) , ∅ if the particle is not in survival
state at timet. If we assumeXx(0) = L(0) (= r), thenXx(t)
andL(t) for t > 0 are related as follows:

L(t)
d
=

{

Xx(t) if t < Tx(r),

∅ if t ≥ Tx(r),
(7)

where
d
= denotes “equal in distribution”. Hence, we have

from (7) that

P{Tx(r) ≤ t} = P{L(t) = ∅}. (8)

That is, the survival time of a particle in the trapping model
has the same distribution as the first exit timeTx(r) of a node
under Lévy flight.

The technical approach for analyzing the critical delay in the
literature is as follows. In the case of Brownian motion, there
are two general techniques in studying the critical delay. One is
to discretize mobility and then apply a Markovian analysis [6].
The other is to use a continuous mobility model and solve a
diffusion equation to obtain a joint spatio-temporal PDF of
a time-varying location of a node [5]. The latter enables one
to obtain the distribution ofL(t) whose spatial derivative is
often referred to asoccupation probability.8 The occupation
probability of Brownian motion can be decomposed to find the
components constituting it. From this decomposition process,
we find that there is a dominating term which characterizes
the limiting behavior of the first exit time distribution.

8The occupation probability in a trapping model correspondsto the joint
spatio-temporal PDF in a random walk model. The mathematical definition
and the distinction between the occupation probability andthe joint spatio-
temporal PDF will be given in Section V-B.

In the case of Lévy flight, the joint spatio-temporal PDF
has a similar form to that of Brownian motion. In addition,
the occupation probabilities and the first exit time distributions
for Brownian motion and Lévy flight have similar structures
in the aspect of the dominating terms. Hence, by identifying
and characterizing the dominating term for Lévy flight, we can
obtain the critical delay under Lévy flight.

B. Analysis

In this subsection, we provide the detailed result for the
critical delay under Lévy flight. Our main result is derivedby
following three steps: (i) the occupation probability is obtained
from the solution of a differential equation that governs the
movement of a particle. (ii) From the occupation probability,
we obtain the survival probability (which will be defined
later), which in turn yields the first exit time distribution. (iii)
By investigating the limiting behavior of the first exit time
distribution, we can finally obtain the order of the critical
delay.

Step 1:Let P (x, t) , d
dxP{L(t) ≤ x}. Intuitively, P (x, t)

represents probability that the particle is located atx at timet.
We call P (x, t) the occupation probability, and it has the
following properties:

• (P1) limt→∞ P (x, t) = 0 ∀x ∈ R.

• (P2)
∫ 2r

0 P (x, 0)dx = P{L(0) = r} = 1.
• (P3)

∫ 2r

0 P (x, t)dx ≤ 1 ∀t > 0.
• (P4)P (0, t) = P (2r, t) = 0 ∀t ≥ 0.
• (P5) SinceP (x, 0) is a PDF having a support{r}, we

haveP (x, 0) = δx,r, whereδx1,x2
denotes the Kronecker

delta which is defined to be 1 ifx1 = x2 and 0 otherwise.

To be precise,P (x, t) for t > 0 could not be a PDF due to
(P3). However, the function obtained by normalizingP (x, t)
with the integral

∫ 2r

0
P (x, t)dx, denoted byP̄ (x, t), becomes

a PDF for a finite timet. We call P̄ (x, t) the joint spatio-
temporal PDFat locationx and timet.

In the first step, we obtain the occupation probabilityP (x, t)
for the process{L(t)}t≥0. For this, we need to characterize
the associated 1-dimensional process{Xx(t)}t≥0. We first
consider the case ofα ∈ (0, 2) and summarize the result in
the following lemma.

Lemma 2:Suppose that{X(t)}t≥0 is 2-dimensional Lévy
flight with a distribution parameterα ∈ (0, 2). Then, asn
goes to∞, the projected process ontox-axis {Xx(t)}t≥0

approaches to 1-dimensional Lévy flight having the same
distribution parameterα. It holds for the process{Xy(t)}t≥0.

Proof: Let Zi andθi (i = 1, 2, . . .) be random variables denot-
ing thei-th step size and direction of the process{X(t)}t≥0,
respectively. Then,X(t) for t = 1, 2, . . . can be expressed as

X(t) = (Xx(t), Xy(t))

= X(0) +

(

t
∑

i=1

Zi cos θi,

t
∑

i=1

Zi sin θi

)

. (9)

We will show that, asn goes to∞, arbitrary step size of
the projected processes (i.e.,Zi| cos θi| andZi| sin θi|) has a
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power-law type CCDF with an exponentα, i.e., for z ≥ 1,

lim
n→∞

P{Zi| cos θi| > z} = lim
n→∞

P{Zi| sin θi| > z}

=
c⋆

zα
,

(10)

where c⋆ , 2
π

∫ π

2

0 (cosϑ)αdϑ. Since the projected processes
take a constant time for every step irrespective of step size,
the property in (10) proves the lemma.

Now we prove (10). By conditioning on the values of the
random variableθi ∼ Uniform[0, 2π], we can rewrite the
CCDF ofZi| cos θi| as

P{Zi| cos θi| > z} =

∫ 2π

0

P{Zi| cos θi| > z | θi = ϑ}dFθi(ϑ)

=
1

2π

∫ 2π

0

P{Zi| cosϑ| > z}dϑ

=
2

π

∫ π

2

0

P{Zi cosϑ > z}dϑ, (11)

where the last two equalities come from the independence
of the random variablesZi and θi, and the symmetry of
the function | cosϑ|, respectively. Using (3), the probability
P{Zi cosϑ > z} in (11) can be obtained forϑ ∈ [0, π2 ] as

P{Zi cosϑ > z}

=

{

c(n) ·
(

( cosϑz )α − ( 1√
n
)α
)

for ϑ ∈ [0, cos−1( z√
n
)),

0 for ϑ ∈ [cos−1( z√
n
), π2 ].

Hence, the CCDF P{Zi| cos θi| > z} is given by

P{Zi| cos θi| > z} =
2c(n)

πzα

∫ cos−1( z
√

n
)

0

(cosϑ)αdϑ

− 2c(n)

π(
√
n)α

cos−1

(

z√
n

)

.

(12)

Noting limn→∞ c(n) = 1 and limn→∞ cos−1
(

z√
n

)

= π
2 , we

have from (12) that

lim
n→∞

P{Zi| cos θi| > z} =
2

πzα

∫ π

2

0

(cosϑ)αdϑ =
c⋆

zα
.

Since| sin θi| d
= | cos θi| for θi ∼ Uniform[0, 2π], we have

P{Zi| sin θi| > z} = P{Zi| cos θi| > z},
which completes the proof. �

Motivated by Lemma 2 and (7), we study the occupation
probability for 1-dimensional Lévy flight withα ∈ (0, 2)
in a finite interval [0, 2r] having trapping boundaries. For
mathematical tractability, our study in this subsection assumes
continuous limit where the scale factor|c| in (1) approaches to
zero. Then, the occupation probabilityP (x, t) for α ∈ (0, 2)
is governed by the following fractional Fokker-Planck equa-
tion [22, Eq. (22)], [26, Eq. (28)]:

∂P (x, t)

∂t
= F

∂αP (x, t)

∂|x|α , (13)

whereF (= Fα > 0) is a generalized diffusion coefficient and
∂α

∂|x|α is the Riesz-Feller derivative of fractional orderα [27].
We next consider the case ofα = 2. In this case, as the

scale factor|c| approaches to zero, the 2-dimensional Lévy
flight converges to a Wiener process which mathematically
models a continuous movement of Brownian motion. Since
1-dimensional projected process of 2-dimensional Brownian
motion is also Brownian motion [5], the occupation probability
for α = 2 is governed by the normal diffusion equation where
the spatial derivative of orderα with α ∈ (0, 2) in (13) is
replaced by the second order derivative withα = 2 [25].
Therefore, with continuous limit, the occupation probability
P (x, t) for α ∈ (0, 2] can be described by the differential
equation in (13). Through Appendix A, we show that the order
of the critical delay under Lévy flight does not change with
continuous limit.

Applying the standard method of separation of variables
gives the solution of (13) as follows:

P (x, t) =

∞
∑

i=1

hiψi(x) exp (λiFt) . (14)

Here,hi (i = 1, 2, . . .) are determined from the initial condi-
tion P (x, 0) = δx,r (as shown in (P5)) and are given byhi =
ψi(r). The functionsψi(x) and the constantsλi can be ob-
tained from the solutions of the problemD[ψi(x)] = λiψi(x)
for the operatorD , dα

d|x|α , and are called eigenfunctions and
eigenvalues ofD, respectively. Without loss of generality, we
assume thatλi are arranged as|λ1| < |λ2| < · · · .

Step 2: Let S(t) , P{L(t) 6= ∅}. Intuitively, S(t)
represents probability that the particle has not hit any trapping
boundary by timet. We call S(t) the survival probability.
The survival probability can be obtained from the occupation
probabilityP (x, t) by S(t) =

∫ 2r

0 P (x, t)dx. Thus, from (14),
the survival probability is given by

S(t) =

∞
∑

i=1

ψi(r)

∫ 2r

0

ψi(x)dx exp (λiFt) . (15)

The first exit time distribution P{Tx(r) ≤ t} can be obtained
from the survival probabilityS(t) through the following
relation:

P{Tx(r) ≤ t} = P{L(t) = ∅} = 1− S(t). (16)

Here, the first equality comes from (8) and the second equality
comes from the definition ofS(t). By combining (15) and
(16), we obtain the first exit time distribution in terms of the
eigenfunctionsψi(x) and the eigenvaluesλi as follows:

P{Tx(r) ≤ t} = 1−
∞
∑

i=1

ψi(r)

∫ 2r

0

ψi(x)dx exp (λiFt) . (17)

For α = 2, the eigenfunctions and the eigenvalues in (17)
can be obtained from the boundary conditionsP (0, t) =
P (2r, t) = 0 ∀t ≥ 0 (as shown in (P4)), and are given by

ψi(x) =
√

1
r sin

(

iπx
2r

)

andλi = −
(

iπ
2r

)2
, respectively [25].

For α ∈ (0, 2), Gitterman [26] provided a solution of (13)
whose eigenfunctions and eigenvalues are given byψi(x) =
√

1
r sin

(

iπx
2r

)

and λi = −
(

iπ
2r

)α
, respectively. Thus, under

Lévy flight with α ∈ (0, 2], the first exit time distribution can
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be expressed as an infinite series of exponential functions as
follows:

P{Tx(r) ≤ t} = 1−
∞
∑

i=1

ηi exp
(

− ρi
rα
t
)

, (18)

whereηi ,
2{1−cos(iπ)}

iπ sin
(

iπ
2

)

andρi , F ( iπ2 )
α.

As will be shown later in the proof of Lemmas 3 and 4,
the smallest (i.e., dominant) decay rate in the exponential
functions in (14) (i.e.,|λ1|) determines the limiting behavior of
the first exit time distribution. That is, the smallest decayrate
characterizes the critical delay under Lévy flight. The solutions
in [25], [26] show that the dominant decay rate|λ1| scales as
Θ(r−α) for α ∈ (0, 2].

Step 3: We are now ready to derive the main result of
this subsection. By using the closed-form expression for
P{Tx(r) ≤ t} in (18), we investigate the order of the critical
delay, stated in Lemmas 3 and 4.

Lemma 3 (Upper bound for Lévy flight): Suppose that un-
der Lévy flight with a distribution parameterα ∈ (0, 2], the
time t , t̂(n) in P{T (cd

√
n) > t} scales asΘ(n

α

2
+ǫ) for an

arbitraryǫ > 0. Then, we have

lim
n→∞

P{T (cd
√
n) > t̂(n)} = 0,

which shows that the critical delayCΠ(n) under Lévy flight
scales asO(n

α

2 ).

Proof: We will prove this lemma by showing that
limn→∞ P{Tx(cd

√
n) ≤ t̂(n)} = 1. Then, by substituting

r = cd
√
n and t = t̂(n) into (6) and taking a limit ton,

we obtain

1 = lim
n→∞

P{Tx(cd
√
n) ≤ t̂(n)}

≤ lim
n→∞

P{T (cd
√
n) ≤ t̂(n)}.

That is, limn→∞ P{T (cd
√
n) ≤ t̂(n)} = 1, or equivalently,

limn→∞ P{T (cd
√
n) > t̂(n)} = 0, which proves the lemma.

First, consider the case ofα = 2. We substituter = cd
√
n

and t = t̂(n) into (18). Then, the series on the right-hand
side of (18) becomes a function ofn, and (for notational
convenience) we let

P{Tx(cd
√
n) ≤ t̂(n)} = 1−

∞
∑

i=1

ηi exp

(

− ρi
(cd)2n

t̂(n)

)

, 1− Ŝ(n).

We now need to take a limit tôS(n). To validate the
interchange of the order of limit and summation, we will
show that there exists a constantn̂ ∈ N such that the
infinite seriesŜ(n) converges uniformly on̂D , [n̂,∞).9 The
uniform convergence will be shown by using the well-known
WeierstrassM test [28].

Since t̂(n) = Θ(n1+ǫ), there exist constantŝn ∈ N and
ĉ > 0 such that

t̂(n) ≥ ĉn1+ǫ for all n ≥ n̂. (19)

9N denotes a set of positive integers.

Let m̂ , F (π/2cd)
2ĉ(n̂)ǫ (> 0). Then, thei-th function of the

seriesŜ(n) is bounded by a constant̂Mi ,
4
π{exp(−m̂)}i for

all n ≥ n̂ as follows:
∣

∣

∣

∣

ηi exp

(

− ρi
(cd)2n

t̂(n)

) ∣

∣

∣

∣

≤ 4

π
exp

(

− ρi
(cd)2n

ĉn1+ǫ

)

≤ 4

π
exp

(

−Fi(π)
2

4(cd)2
ĉ(n̂)ǫ

)

= M̂i.

Here, the first inequality comes from the bounds|ηi| ≤
4
π ∀i ∈ N and (19), and the second inequality comes from
the boundsi2 ≥ i ∀i ∈ N andnǫ ≥ (n̂)ǫ ∀n ≥ n̂. Note that
the series

∑∞
i=1 M̂i converges since it is a geometric series

with a common ratioexp(−m̂) ∈ (0, 1). Since the target of
the functions is a complete normed vector space, the infinite
seriesŜ(n) converges uniformly on̂D. Consequently, we can
interchange the order of limit and summation, and we have

lim
n→∞

P{Tx(cd
√
n) ≤ t̂(n)}

= 1− lim
n→∞

Ŝ(n)

= 1−
∞
∑

i=1

ηi lim
n→∞

exp

(

− ρi
(cd)2n

t̂(n)

)

.

Since t̂(n) = Θ(n1+ǫ), we furthermore have

lim
n→∞

exp

(

− ρi
(cd)2n

t̂(n)

)

= 0,

which giveslimn→∞ P{Tx(cd
√
n) ≤ t̂(n)} = 1. This com-

pletes the proof forα = 2.
Next, consider the case ofα ∈ (0, 2). Similarly to the proof

for α = 2, we can prove this case by substitutingr = cd
√
n

and t = t̂(n) into (18) and showing that

lim
n→∞

P{Tx(cd
√
n) ≤ t̂(n)} = 1. (20)

Since the dominant decay rate|λ1| scales asΘ(r−α) =
Θ(n−α

2 ), by using approaches in the proof forα = 2, we
can show (20). Due to similarities, we omit the details.�

Lemma 4 (Lower bound for Lévy flight): Suppose that un-
der Lévy flight with a distribution parameterα ∈ (0, 2], the
time t , t̃(n) in P{T (cd

√
n) > t} scales asΘ(n

α

2
−ǫ) for an

arbitraryǫ > 0. Then, we have

lim
n→∞

P{T (cd
√
n) > t̃(n)} = 1,

which shows that the critical delayCΠ(n) under Lévy flight
scales asΩ(n

α

2 ).

Proof: We will prove this lemma by showing that
limn→∞ P{Tx(cd

√
n/

√
2) ≤ t̃(n)} = 0. Then, by substituting

r = cd
√
n and t = t̃(n) into (6) and taking a limit ton, we

obtain

lim
n→∞

P{T (cd
√
n) ≤ t̃(n)} ≤2 lim

n→∞
P{Tx(cd

√
n/

√
2) ≤ t̃(n)}

= 0.

That is, limn→∞ P{T (cd
√
n) ≤ t̃(n)} = 0, or equivalently,

limn→∞ P{T (cd
√
n) > t̃(n)} = 1, which proves the lemma.
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First, consider the case ofα = 2. We substituter =
cd
√
n/

√
2 andt = t̃(n) into (18). Then, the series on the right-

hand side of (18) becomes a function ofn, and analogously
to the proof of Lemma 3, we let

P{Tx(cd
√
n/

√
2) ≤ t̃(n)} = 1−

∞
∑

i=1

ηi exp

(

− 2ρi
(cd)2n

t̃(n)

)

, 1− S̃(n).

Similarly to the proof of Lemma 3, we will show that there
exists a constant̃n ∈ N such that the infinite series̃S(n)
converges uniformly oñD , [ñ,∞).

Since t̃(n) = Θ(n1−ǫ), there exist constants̃n ∈ N and
c̃ > 0 such that

t̃(n) ≥ c̃n1−ǫ for all n ≥ ñ. (21)

For a technical purpose for showing the uniform convergence,
we restrict the domain ofn as D̃d , [ñ, d] for an arbitrary
d ≥ ñ. Let m̃ , F (π/

√
2cd)

2c̃d−ǫ. Then, thei-th function of
the series̃S(n) is bounded by a constant̃Mi ,

4
π{exp(−m̃)}i

for all n ∈ D̃d as follows:
∣

∣

∣

∣

ηi exp

(

− 2ρi
(cd)2n

t̃(n)

)
∣

∣

∣

∣

≤ 4

π
exp

(

− 2ρi
(cd)2n

c̃n1−ǫ

)

≤ 4

π
exp

(

−Fi(π)
2

2(cd)2
c̃d−ǫ

)

= M̃i.

Here, the first inequality comes from the bounds|ηi| ≤ 4
π ∀i ∈

N and (21), and the second inequality comes from the bounds
i2 ≥ i ∀i ∈ N and n−ǫ ≥ d−ǫ ∀n ∈ D̃d. Note that the
series

∑∞
i=1 M̃i converges since it is a geometric series with

a common ratioexp(−m̃) ∈ (0, 1). Hence, the infinite series
S̃(n) converges uniformly oñDd. Sinced is arbitrary, we get
uniform convergence oñD. Consequently, we can interchange
the order of limit and summation, and we have

lim
n→∞

P{Tx(cd
√
n/

√
2) ≤ t̃(n)}

= 1− lim
n→∞

S̃(n)

= 1−
∞
∑

i=1

ηi lim
n→∞

exp

(

− 2ρi
(cd)2n

t̃(n)

)

.

Since t̃(n) = Θ(n1−ǫ), we furthermore have

lim
n→∞

exp

(

− 2ρi
(cd)2n

t̃(n)

)

= 1,

which gives

lim
n→∞

P{Tx(cd
√
n/

√
2) ≤ t̃(n)} = 1−

∞
∑

i=1

ηi.

Note from (18) that P{Tx(cd
√
n/

√
2) ≤ 0} = 1 −

∑∞
i=1 ηi.

In addition, it is obvious that P{Tx(cd
√
n/

√
2) ≤ 0} = 0.

Therefore, we havelimn→∞ P{Tx(cd
√
n/

√
2) ≤ t̃(n)} = 0.

This completes the proof forα = 2.
Next, consider the case ofα ∈ (0, 2). Similarly to the

proof for α = 2, we can prove this case by substituting
r = cd

√
n/

√
2 and t = t̃(n) into (18) and showing that

lim
n→∞

P{Tx(cd
√
n/

√
2) ≤ t̃(n)} = 0. (22)

Since the dominant decay rate|λ1| scales asΘ(r−α) =
Θ(n−α

2 ), by using approaches in the proof forα = 2, we
can show (22). Due to similarities, we omit the details.�

Combining Lemmas 3 and 4 yields the following theorem.

Theorem 1: The critical delay CΠ(n) under Lévy flight
with a distribution parameter α ∈ (0, 2] scales asΘ(n

α

2 ).

Remark 1:The main idea behind the proof of Lemmas 3
and 4 was that the smallest decay rate in the exponential
functions in (18) (i.e.,ρ1

rα ) determines the limiting behavior
of the first exit time distribution. That is, the smallest decay
rate characterizes the critical delay under Lévy flight.

VI. CRITICAL DELAY ANALYSIS FOR L ÉVY WALK

In this section, we will show that the critical delayCΠ(n)
under Lévy walk with a distribution parameterα scales as
Θ(n

1

2 ) for α ∈ (0, 1) andΘ(n
α

2 ) for α ∈ [1, 2] (Theorem 2).
In Section VI-A, we explain technical challenges and our
approach for proving Theorem 2. In Section VI-B, we prove
Theorem 2 by showing that the upper bound onCΠ(n) scales
asO(n

1

2 ) for α ∈ (0, 1) andO(n
α

2 ) for α ∈ [1, 2] (Lemma 6),
and that the lower bound onCΠ(n) scales asΩ(n

1

2 ) for
α ∈ (0, 1) andΩ(n

α

2 ) for α ∈ [1, 2] (Lemma 7).

A. Technical Approach

We first explain the technical challenges that preclude the
use of our technique for Lévy flight as well as other conven-
tional techniques. We next explain our technical approach to
deal with these challenges. The technical challenges are two-
folds and are mainly inherent in the Lévy walk nature.

(i) We begin with the description of differences between
Lévy flight and Lévy walk from a modeling perspective. Let
ti (i = 1, 2, . . .) denote the time instant when thei-th step
begins. We take the timeti as the embedded point of the
process{X(t)}t≥0, and focus on the corresponding embedded
process{Ei}i∈N , {X(ti)}i∈N. Under both Lévy mobility
models, at each embedded pointti, the destination of the next
step of thei-th step (i.e.,Ei+1) is chosen independently of
the past locations at timet < ti and depends only on the
current location at timet = ti. That is, the embedded process
{Ei}i∈N satisfies the following Markov property:

P{Ei+1 = xi+1 |Ej = xj , j = 1, . . . , i}
= P{Ei+1 = xi+1 |Ei = xi}.

Thus, under both Lévy mobility models, the process
{X(ti)}i∈N becomes a discrete-time Markov chain. However,
the fact that the embedded pointti is chosen in a different
way for Lévy flight and Lévy walk incurs the key challenge.
In the case of Lévy flight, it is chosen deterministically as
ti = i − 1. Therefore, Lévy flight is a discrete-time Markov
process. However, in the case of the Lévy walk, the embedded
point is chosen stochastically and is correlated with step size
as follows: ti =

∑i−1
j=1 Zj (whereZj is a random variable

denoting thej-th step size). Therefore, the Lévy walk is a
semi-Markov process [20] whose embedded process becomes
Lévy flight.
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Fig. 2. An example of the random variablesN(n) (= 4), Zi and Z̄N(n).

(ii) The proof of Lemma 2 also shows that, for a given 2-
dimensional Lévy walk, its 1-dimensional projected processes
also have a power-law type of step size distribution. However,
the velocity of the projected processes is not a constant
for every step, which implies that neither of 1-dimensional
projected processes of 2-dimensional Lévy walk can be 1-
dimensional Lévy walk.

Consequently, the technique used for Lévy flight in this
paper is not applicable because it requires decoupling of space
and time. In addition, the occupation probabilityP (x, t) is not
available and the derivation is not mathematically tractable.

To cope with these technical challenges, we propose a dif-
ferent approach based on a stochastic analysis technique char-
acterizing the embedded Markov process of a semi-Markov
process. Specifically, our approach is to derive a relation
between the first exit time under Lévy flight (i.e., embedded
Markov process) and that under Lévy walk (i.e., semi-Markov
process). From this relation, our technique derives a tight
upper bound for the critical delay. Then, by combining the
upper bound and a lower bound for the critical delay inferred
from our analytical result of Lévy flight in Section V, we can
provide the exact order of the critical delay under Lévy walk.

B. Analysis

Let N(n) be a random variable denoting the number of
steps occurred untilt ≤ T (cd

√
n). Then,

T (cd
√
n) =

{

cd
√
n if N(n) = 1,

∑N(n)−1
i=1 Zi + Z̄N(n) if N(n) ≥ 2,

(23)

where Z̄N(n) is a random variable denoting the moving
distance during theN(n)-th step until exiting the discD(n)
(See Fig. 2.). Note that̄ZN(n) is not identically distributed
with Zi, and we have

Z̄N(n) < 2cd
√
n with probability 1. (24)

The random variableN(n) is closely related to the first exit
time under Lévy flight, denoted byTLF(cd

√
n), as follows:

N(n)
d
= ⌈TLF(cd

√
n)⌉, (25)

where ⌈x⌉ denotes the smallest integer larger than or equal
to x. In Lemma 5, we derive the order of E[N(n)], which
will be used to study the critical delay under Lévy walk.

Lemma 5:E[N(n)] scales asΘ(n
α

2 ) for α ∈ (0, 2].

Proof: From Lemma 3, we havelimn→∞ P{TLF(cd
√
n) ≤

t̂(n)} = 1 when t̂(n) = Θ(n
α

2
+ǫ̂) for α ∈ (0, 2] and an

arbitrary ǫ̂ > 0. Hence, we have

E[TLF(cd
√
n)] = O(n

α

2
+ǫ̂). (26)

From Lemma 4, we havelimn→∞ P{TLF(cd
√
n) > t̃(n)} = 1

when t̃(n) = Θ(n
α

2
−ǫ̃) for α ∈ (0, 2] and an arbitrarỹǫ > 0.

Thus, we have

E[TLF(cd
√
n)] = Ω(n

α

2
−ǫ̃). (27)

By choosingǫ̂ and ǫ̃ arbitrarily small, from (26) and (27), we
have

E[TLF(cd
√
n)] = Θ(n

α

2 ) ∀α ∈ (0, 2]. (28)

Note from (25) that

E[TLF(cd
√
n)] ≤ E[N(n)] ≤ E[TLF(cd

√
n)] + 1, (29)

which shows that the order of E[N(n)] is the same as that of
E[TLF(cd

√
n)]. Therefore, combining (28) and (29) yields the

lemma. �

With the help of Lemma 5, we can derive an upper bound
for the critical delay under Lévy walk.

Lemma 6 (Upper bound for Lévy walk): Suppose that un-
der Lévy walk with a distribution parameterα, the time
t , t̂(n) in P{T (cd

√
n) > t} scales asΘ(n

1

2
+ǫ1) for an

arbitraryǫ1 > 0 andα ∈ (0, 1), andΘ(n
α

2
+ǫ2) for an arbitrary

ǫ2 > 0 andα ∈ [1, 2]. Then, we have

lim
n→∞

P{T (cd
√
n) > t̂(n)} = 0,

which shows that the critical delayCΠ(n) under Lévy walk
scales asO(n

1

2 ) for α ∈ (0, 1) andO(n
α

2 ) for α ∈ [1, 2].

Proof: Using Markov’s inequality [29], we have

P{T (cd
√
n) > t̂(n)} ≤ E[T (cd

√
n)]

t̂(n)
. (30)

We calculate the expectation E[T (cd
√
n)] on the right-hand

side of (30) by conditioning on the values ofN(n) as

E[T (cd
√
n)] = E

[

E[T (cd
√
n) |N(n)]

]

=

∞
∑

k=1

E[T (cd
√
n) |N(n) = k] · P{N(n) = k}.

(31)

From (23), we have fork = 1,

E[T (cd
√
n) |N(n) = k] = cd

√
n. (32)

In addition, from (23), we have fork = 2, 3, . . .,

E[T (cd
√
n) |N(n) = k]

= E





N(n)−1
∑

i=1

Zi + Z̄N(n)

∣

∣

∣

∣

N(n) = k





=

k−1
∑

i=1

E[Zi |N(n) = k] + E[Z̄k |N(n) = k]. (33)
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The random variablesZi (i = 1, . . . , k−1) andZ̄k in (33) are
correlated with the random variableN(n) (= k), whereas the
random variablesZi (i = k+1, k+2, . . .) are independent of
N(n) (= k). Specifically, fori = 1, . . . , k − 1, the step size
Zi should be less than the diameter of the discD(n) (i.e.,
2cd

√
n). In addition, the truncated step sizēZk should satisfy

the inequality in (24). Hence, the conditional expectations on
the right-hand side of (33) are bounded as follows:

E[Zi|N(n) = k] ≤ E[Z|Z ≤ 2cd
√
n],

E[Z̄k|N(n) = k] ≤ 2cd
√
n,

(34)

whereZ denotes the generic random variable forZi.10 Com-
bining (31)-(34), we obtain an upper bound for E[T (cd

√
n)]

as follows:

E[T (cd
√
n)]

≤ cd
√
n · P{N(n) = 1}+ 2cd

√
n

∞
∑

k=2

P{N(n) = k}

+ E[Z|Z ≤ 2cd
√
n]

∞
∑

k=2

(k − 1) · P{N(n) = k}

≤ 2cd
√
n

∞
∑

k=1

P{N(n) = k}

+ E[Z|Z ≤ 2cd
√
n]

∞
∑

k=1

k · P{N(n) = k}

= 2cd
√
n+ E[Z|Z ≤ 2cd

√
n] · E[N(n)]. (35)

Using (3), we can calculate the conditional expectation
E[Z|Z ≤ 2cd

√
n] in (35) and it scales for eachα ∈ (0, 2]

as follows:

E[Z|Z ≤ 2cd
√
n]

=



























α
1−α

(2cd
√
n)1−α−1

1−(2cd
√
n)−α

for α ∈ (0, 1),
log(2cd

√
n)

1−(2cd
√
n)−1

for α = 1,

α
α−1

1−(2cd
√
n)1−α

1−(2cd
√
n)−α

for α ∈ (1, 2),
√
2σ√
π

exp(−1/2σ2)−exp(−2(cd)
2n/σ2)

erf(cd
√
2n/σ)−erf(1/

√
2σ)

for α = 2,

=











Θ(n(1−α)/2) for α ∈ (0, 1),

Θ(log(n)) for α = 1,

Θ(n0) for α ∈ (1, 2].

Since E[N(n)] scales asΘ(n
α

2 ) by Lemma 5, the term on the
right-hand side of (35) scales as

2cd
√
n+ E[Z|Z ≤ 2cd

√
n] · E[N(n)]

=











Θ(n
1

2 ) for α ∈ (0, 1),

Θ(n
1

2 log(n)) for α = 1,

Θ(n
α

2 ) for α ∈ (1, 2].

(36)

10E[Zi |N(n) = k] = E[Z] for i = k + 1, k + 2, · · · .

Thus, we have from (35) and (36) the following:

lim
n→∞

E[T (cd
√
n)]

t̂(n)

≤ lim
n→∞

2cd
√
n+ E[Z|Z ≤ 2cd

√
n] · E[N(n)]

t̂(n)

= 0.

Therefore, from (30), we have

lim
n→∞

P{T (cd
√
n) > t̂(n)} ≤ lim

n→∞
E[T (cd

√
n)]

t̂(n)
≤ 0,

i.e., limn→∞ P{T (cd
√
n) > t̂(n)} = 0. This completes the

proof. �

Lemma 7 (Lower bound for Lévy walk): Suppose that un-
der Lévy walk with a distribution parameterα, the time
t , t̃(n) in P{T (cd

√
n) > t} scales asΘ(n

1

2
−ǫ1) for an

arbitraryǫ1 > 0 andα ∈ (0, 1), andΘ(n
α

2
−ǫ2) for an arbitrary

ǫ2 > 0 andα ∈ (1, 2]. Then, we have

lim
n→∞

P{T (cd
√
n) > t̃(n)} = 1,

which shows that the critical delayCΠ(n) under Lévy walk
scales asΩ(n

1

2 ) for α ∈ (0, 1) andΩ(n
α

2 ) for α ∈ [1, 2].

Proof: We will prove this lemma by showing for each of the
cases ofα ∈ (0, 1) andα ∈ [1, 2] that

lim
n→∞

P{T (cd
√
n) ≤ t̃(n)} = 0.

We first consider the case ofα ∈ (0, 1). Since a Lévy walker
moves with a constant velocityv = 1, it takes at leastcd

√
n

time to exit from the discD(n). Thus, it is obvious that

P{T (cd
√
n) < cd

√
n} = 0. (37)

Since t̃(n) = Θ(n
1

2
−ǫ1), there exists a constant̃n ∈ N such

that t̃(n) < cd
√
n for n ≥ ñ. Hence, we have forn ≥ ñ

P{T (cd
√
n) ≤ t̃(n)} ≤ P{T (cd

√
n) < cd

√
n}. (38)

Combining (37) and (38) and then taking limits, we have

lim
n→∞

P{T (cd
√
n) ≤ t̃(n)} ≤ lim

n→∞
P{T (cd

√
n) < cd

√
n}

= 0,

i.e., limn→∞ P{T (cd
√
n) ≤ t̃(n)} = 0. We have proved the

lemma in the case ofα ∈ (0, 1).
We next consider the case ofα ∈ [1, 2]. In the following,

we use the notationsTLF(·) andTLW(·) to distinguish the first
exit times between Lévy flight and Lévy walk. We will show
based on (23) and (25) that fort ≥ 0,

P{TLW(cd
√
n) ≤ t} ≤ P{TLF(cd

√
n) ≤ t+ 1}. (39)

From (23), ifN(n) = 1, thenTLW(cd
√
n) = cd

√
n > 0 =

N(n) − 1. In addition, if N(n) ≥ 2, then TLW(cd
√
n) =

∑N(n)−1
i=1 Zi+ẐN >

∑N(n)−1
i=1 Zi ≥ N(n)−1, where the last

inequality comes from the assumption that the step sizeZ has
a lower bound at 1 (given in Section IV). Combining above
two cases gives

TLW(cd
√
n) ≥ N(n)− 1.
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(a) Lévy flight (b) Lévy walk

Fig. 3. Critical delays under Lévy flight and Lévy walk for different α.

From (25), we obtainN(n)
d
= ⌈TLF(cd

√
n)⌉ ≥ TLF(cd

√
n).

Thus, we have with probability 1,

TLW(cd
√
n) ≥ TLF(cd

√
n)− 1.

This proves (39). Substitutingt = t̃(n) into (39), we obtain

P{TLW(cd
√
n) ≤ t̃(n)} ≤ P{TLF(cd

√
n) ≤ t̃(n)+1}. (40)

For t̃(n) scaling asΘ(n
α

2
−ǫ2), t̃(n) + 1 also scales as

Θ(n
α

2
−ǫ2). Consequently, by Lemma 4, the probability on the

right-hand side of (40) becomes in the limit:

lim
n→∞

P{TLF(cd
√
n) ≤ t̃(n) + 1} = 0.

Therefore, from (40), we havelimn→∞ P{TLW(cd
√
n) ≤

t̃(n)} = 0, which proves the lemma in the case ofα ∈ [1, 2].
This completes the proof. �

Combining Lemmas 6 and 7 yields the following theorem.

Theorem 2: The critical delay CΠ(n) under Lévy walk
with a distribution parameter α scales asΘ(n

1

2 ) for
α ∈ (0, 1) and Θ(n

α

2 ) for α ∈ [1, 2].

VII. D ISCUSSION

We summarize the high-level interpretations of this paper.
Fig. 3. shows the critical delays under Lévy walk and Lévy
flight, parameterized byα. Lévy flight shows that the critical
delay proportionally increases withα. However, in the case of
the Lévy walk, we can find a phase transition such that when
α ∈ (0, 1), the critical delay is constantlyΘ(n

1

2 ) and shifts
to the proportional increasing phase whenα ∈ [1, 2]. Two
different scaling regions are essentially related to the fact that
the mean step size of Lévy walk forα ∈ (0, 1) is infinite but
finite for α ∈ [1, 2]. In contrast to Lévy walk, the travel time
independence of step size in Lévy flight leads to continuous
scaling overα. Note that forα = 2 (i.e., Brownian motion)
our result coincides with that in [6] which also studied the
critical delay under Brownian motion.

By using values ofα from experimental measurements from
[7], we can see how network delay scales with human mobility
in practice. To give an insight to the readers, we showα
values measured from five different sites in Table I presented
in [7] with a flight extraction method, “rectangle”.11 We see

11We do not presentα values from other extraction methods in [7] which
intentionally exclude some detailed motions of real traces. To capture specific
behaviors of humans, one can borrow thoseα values.

TABLE I
EXPERIMENTALα VALUES FOR DIFFERENT SITES PRESENTED IN[7].

Site α Site α

KAIST 0.53 New York City 1.62
NCSU 1.27 Disney World 1.20

State fair 1.81

that critical delays for human mobility range fromΘ(n0.27) to
Θ(n0.91). Human mobility mainly hasα > 1, in which case a
longer delay thanΘ(

√
n) is needed. This implies that it may

be hard to design a low delay protocol for mobile networks
under human mobility.

Our contribution is not restricted to the mathematical deriva-
tion of delay scaling for new mobility models. We provided
techniques that connect the diffusion equation of a continuous
time random walk to the delay scaling as well as that analyze
the delay scaling of semi-Markovian movements. We expect
that our techniques can be further developed to the analysis
of other detailed performance metrics such as contact time
distribution and the generalized delay-capacity tradeofffor
various levels of per-node throughput.

Future work includes investigation of throughput and delay
scaling for mobile networks with heterogeneous and collective
node mobilities. In addition to the recent research topics on
“per-node throughput scaling” under inhomogeneous spatial
node distributions (i.e., Cox process, Neyman-Scott process,
Matérn cluster process and Thomas process), e.g., [30], [31],
our paper can be an important step to the study of delay
scaling under such heterogeneous networks. There is an insight
from [8] that in human-assisted networks, the actual delays
might be even shorter. This is because human mobility is not
completely random: people tend to visit the same locations
and regularly meet a group of people every day. Although their
mobility can be characterized by heavy-tail distributions, these
regularity in daily mobility significantly facilitates routing of
packets among people (as long as they are socially connected).
Therefore, there remains a possibility of designing a low delay
protocol for mobile networks under heterogeneous human
mobility by judiciously utilizing these social factors.

VIII. C ONCLUSION

We have presented Lévy mobility models consisting of Lévy
flight and Lévy walk parameterized byα and studied the
critical delay under both mobility models. Lévy mobility is
known as a realistic human mobility so that the critical delay
we provided here can be essential in designing an architecture
and protocols of a wireless mobile network. The insight that
the critical delay scales asΘ(n

α

2 ) for Lévy mobility models
in the range ofα ∈ [1, 2] is especially important because
it is anticipating that the delay of mobile networks with
human mobility (e.g., smartphone networks, pocket switched
networks) could be quite high in practice, considering theα
values measured in real traces. The insight tells that mobile
networks operated by human mobility patterns may need to
prepare an alternative path for delay sensitive data as wellas
even for delay tolerable data whose tolerance level is limited.
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APPENDIX A
CRITICAL DELAY ANALYSIS FOR L ÉVY FLIGHT WITHOUT

CONTINUOUS L IMIT

In Section V, we have studied the critical delay under
Lévy flight using continuous limit. By following the technique
in [6], we can study the critical delay without continuous
limit (i.e., with a non-zero scale factor|c|) and can derive a
lower bound for the critical delay under Lévy flight. Lemma 8
summarizes the result.

Lemma 8:With a non-zero scale factor|c|, the critical delay
CΠ(n) under Lévy flight with a distribution parameterα ∈
(0, 2] scales asΩ(n

α

2 ).

Before proving the lemma, we give a remark. The scaling
property of the critical delay with continuous limit (shown
in Theorem 1) works as an upper bound for the one without
continuous limit. Hence, the result in Lemma 8 shows that our
analysis in Section V gives the tightest upper bound, which
justifies our technique using continuous limit. We now give
the proof of Lemma 8.

Proof: Similarly to the proof of Lemma 4, we will prove this
lemma by showing that

lim
n→∞

P{Tx(cd
√
n/

√
2) ≤ t̃(n)} = 0, (41)

wheret̃(n) = Θ(n
α

2
−ǫ) for an arbitraryǫ > 0 andα ∈ (0, 2].

Then, from (6), we obtainlimn→∞ P{T (cd
√
n) ≤ t̃(n)} ≤

2 limn→∞ P{Tx(cd
√
n/

√
2) ≤ t̃(n)} = 0. That is, we

have limn→∞ P{T (cd
√
n) ≤ t̃(n)} = 0, or equivalently,

limn→∞ P{T (cd
√
n) > t̃(n)} = 1, which shows that the

critical delayCΠ(n) scales asΩ(n
α

2 ).
Without loss of generality, we assumeX(0) = (0, 0). Then,

from (9),Xx(t) for t = 1, 2, . . . can be expressed as

Xx(t) =

t
∑

i=1

Zi cos θi. (42)

Let Z cos θ denote the generic random variable forZi cos θi.
By the independence of random variablesZ and θ, the
mean ofZ cos θ is given by E[Z cos θ] = E[Z]E[cos θ] =
0. Hence, from (42), the mean ofXx(t) is given by
E[Xx(t)] = tE[Z cos θ] = 0 and the variance ofXx(t)
becomes E[(Xx(t))

2] = tE[(Z cos θ)2]. Thus, Hoeffding’s
inequality [6] gives an upper bound for P{Xx(t) ≥ r/

√
2}

as follows: P{Xx(t) ≥ r/
√
2} ≤ exp

(

− r2

8tE[(Z cos θ)2]

)

. By
the symmetry of node motion, we have

P{|Xx(t)| ≥ r/
√
2} ≤ 2 exp

(

− r2

8tE[(Z cos θ)2]

)

. (43)

Due to (A1), the event{Tx(r/
√
2) ≤ k} for k = 1, 2, . . .

implies the event
⋃k

t=1{|Xx(t)| ≥ r/
√
2}. Hence, we have

P{Tx(r/
√
2) ≤ k} ≤

k
∑

t=1

P{|Xx(t)| ≥ r/
√
2}

≤ 2
k
∑

t=1

exp

(

− r2

8tE[(Z cos θ)2]

)

≤ 2k exp

(

− r2

8kE[(Z cos θ)2]

)

, (44)

where the second inequality comes from (43). Substitutingr =
cd
√
n andk = t̃(n) into (44), we have

P{Tx(cd
√
n/

√
2) ≤ t̃(n)}

≤ 2t̃(n) exp

(

− (cd)
2n

8t̃(n)E[(Z cos θ)2]

)

.
(45)

In the following, we will derive a bound for E[(Z cos θ)2].
Since E[(Z cos θ)2] = E[(Z| cos θ|)2], we have

E[(Z cos θ)2] =

∫

√
n

0

z2dFZ| cos θ|(z). (46)

We first consider the case ofα ∈ (0, 2). From the CCDF of
Z| cos θ| given for z ≥ 1 in (12), we have forz ≥ 1,

dFZ| cos θ|(z)

dz
= − d

dz
P{Z| cos θ| > z}

=
2αc(n)

πzα+1

∫ cos−1( z
√

n
)

0

(cosϑ)αdϑ

≤ αc⋆c(n)

zα+1
.

Thus, the integral on the right-hand side of (46) is bounded
above by

∫

√
n

0

z2dFZ| cos θ|(z)

=

∫ 1

0

z2dFZ| cos θ|(z) +

∫

√
n

1

z2dFZ| cos θ|(z)

≤ P{0 ≤ Z| cos θ| ≤ 1}+
∫

√
n

1

z2
αc⋆c(n)

zα+1
dz

= P{0 ≤ Z| cos θ| ≤ 1}+ αc⋆c(n)

2− α
(n1−α

2 − 1),

from which we have

E[(Z cos θ)2] = O(n1−α

2 ) for α ∈ (0, 2). (47)

We next consider the case ofα = 2. By following the approach
in the case ofα ∈ (0, 2), we have

E[(Z cos θ)2] = O(n1−α

2 ) for α = 2. (48)

Combining (47) and (48) gives E[(Z cos θ)2] = O(n1−α

2 ) for
α ∈ (0, 2]. Hence, there exist constantsn̄ ∈ N and c̄ > 0 such
that

E[(Z cos θ)2] ≤ c̄n1−α

2 for all n ≥ n̄. (49)

In addition, sincẽt(n) = Θ(n
α

2
−ǫ), there exist constants̃n ∈

N and c̃ > 0 such that

t̃(n) ≤ c̃n
α

2
−ǫ for all n ≥ ñ. (50)

By (49) and (50), the term on the right-hand side of (45) is
further bounded by

2t̃(n) exp

(

− (cd)
2n

8t̃(n)E[(Z cos θ)2]

)

≤ 2c̃n
α

2
−ǫ exp

(

− (cd)
2nǫ

8c̃c̄

)

.

(51)



13

By L’Hôspital’s rule, (51) becomes in the limit as

lim
n→∞

2t̃(n) exp

(

− (cd)
2n

8t̃(n)E[(Z cos θ)2]

)

≤ lim
n→∞

2c̃n
α

2
−ǫ exp

(

− (cd)
2nǫ

8c̃c̄

)

= 0.

(52)

Combining (45) and (52) proves (41). This completes the
proof. �
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