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Abstract—Delay-capacity tradeoffs for mobile networks have

been analyzed through a number of research work. However,

L evy mobility known to closely capture human movement pat-

terns has not been adopted in such work. Understanding the

delay-capacity tradeoff for a network with Lévy mobility can

provide important insights into understanding the performance
of real mobile networks governed by human mobility. This pager

analytically derives an important point in the delay-capadty

tradeoff for L évy mobility, known as the critical delay. The
critical delay is the minimum delay required to achieve greder

throughput than what conventional static networks can postbly

achieve (i.e.,0(1/+/n) per node in a network with n nodes). The
Levy mobility includes Lévy flight and Léevy walk whose step
size distributions parametrized by « € (0,2] are both heavy-
tailed while their times taken for the same step size are diffrent.

Our proposed technique involves (i) analyzing the joint spto-

temporal probability density function of a time-varying lo cation

of a node for Lévy flight and (ii) characterizing an embedded
Markov process in Léevy walk which is a semi-Markov process.
The results indicate that in Lévy walk, there is a phase transition
such that for a € (0, 1), the critical delay is always @(n%) and

for a € [1,2] itis ©(n2). In contrast, Lévy flight has the critical

delay ©(n?) for « € (0,2].

I. INTRODUCTION

(a) Brownian motion

(b) Lévy mobility (c) Random waypoint

Fig. 1. Sample trajectories of (a) Brownian motion, (b) {éuobility and
(c) random waypoint.

studied the minimum delays required to achieve more per-
node throughput thaﬁ)(l/\/ﬁﬂ under various mobility mod-
els including i.i.d., random waypoint, random directiondan
Brownian motion. This minimum delay is calleditical delay.
However, although the work provides a nice framework for
studying delay-capacity scaling for wireless networks armnd
a family of random walk models, the practical values of
these mobility models are limited. While these models are
simple enough for mathematical tractability, they do ndiect
realistic mobility patterns commonly exhibited in real nileb
networks.

Since the seminal work by Gupta and Kumar [1] on the Hgmans are a m_ajor factor in mobile networks as most
capacity of wireless networks, delay and throughput trﬁdeomf)b'le nodes or devices (smartphones and cars) are carrl_gd o]
for wireless networks have been extensively studied for vaffiven by humans. Recent studies [7}-[9] on human mobility
ous mathematical techniques, scheduling algorithms, refanShoW that step size distributidhare heavy-tailed where step
models, mobility models and physical layer techniques. TH@ defined to be the straight line trip of a moving object (e.g.
work by Grossglauser and Tség [2] showed that the per_nog%rt_|cles_ or humans) from one location to g_nother without
throughput remains constan®(1)) when node mobility is @ directional change or Jpause. These mobility patterns are
used for communication. This result is surprising becau&&curately modeled by Lévy process][10].

Gupta and Kumar[]1] had previously shown that the per- Lévy mobility is a random walk mobility whose step size
node throughput @(1/y/n)) in wireless networks with no distribut_ion is parametrized by € (0,2] and is heavy-tailed
mobility diminishes as the number of nodesncreases. This €Xcept in the extreme case af = 2. For o € (0,2), the

throughput gain is achieved at the cost of larger delays.

g 1 i i
The amount of delay that a network needs to sacrifice ¥4% ' Where z is a step size. Forv =

distribution is well approximated by a power-law distritout
2, the step size

guarantee a given throughput has been studied under varig@aforms to Gaussian distributiinintuitively, such a random
mobility models [3]-[5]. In particular, Sharmat al. [6] walk contains many short steps and a small yet significant
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number of exceptionally long steps. With different valués.p
the movement patterns of Lévy mobility models are widely
different. Smallera induces a larger number of long steps.

1As [1] showed, ©(1/4/n) is the maximum throughput that wireless
networks relying on naive multi-hop transmissions can ehiwithout the
help of node mobility.

2Step size is often referred to as flight length in some literest.

3Lévy mobility becomes Brownian motion in the extreme cabeve= 2.
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This type of mobility patterns is significantly differentofn 1. RELATED WORK

Brownian motion and random waypoint as illustrated in Eig. 1 Gupta and Kumar[1] showed that the per-node throughput
In the literature, there are two types of Lévy mobility misde of random wireless networks with static nodes scales as
for classification:Lévy flightand Levy walk In Lévy flight, 5 function of O(1/,/n) and proposed a scheme achieving
every step takes aonstant timeirrespective of its step size ©(1//nlogn). The result for static wireless networks was
and in Lévy walk, it takes @onstant velocityLévy flight and |ater enhanced t®(1//n) by exercising individual power
Lévy walk can show the same pattern of traces but their tinggntrol [11], [12]. Grossglauser and Ts€ [2] proved that a
durations taken to have such traces are essentially diferg.qnstant per-node throughput is achievable by using ngbili
Intuitively, Levy flight can be easily slotted while Lévyak  \yhen the nodes follow ergodic and stationary mobility mod-

is not. . els. This result disproved the conventional belief thatenod
Unfortunately, understanding tradeoffs between throughpmobi”ty can negatively impact network capacity as it cause

and delay under Lévy mobility models is technically Ver¥onnectivity breakup and channel quality degradation.
challenging and underexplored. Unlike the other randonkwal Many follow-up studies[[3], 4], [I8]<[17] have been de-
models permitting mathematical tractability, the Levp@#SS yoted to understand, characterize and exploit the tragleoff
is not very well understood mathematically despite sigarfic petween throughput and delay. Especially, the delay requir
studies on Lévy process in mathematics and physics. ThitSoptain the constant throughp@(1) has been later studied
the conventional techniques][5].1[6] used to study delaymder various mobility models 4]/ T16]=[18]. The studies
capacity tradeoffs cannot be applied to Lévy mobility modsrovided that the delay to obta#(1) of per-node throughput
els, especially to Lévy walk which has high spatio-temporgecome® (n) for most mobility models such as i.i.d. mobility,

correlation. In more specific, since Lévy walk is not eligib \3nqdom direction, random waypoint and Brownian motion
for discretization for Markovian analysis, its mathematic ,gqels.

characteristics such as joint spatio-temporal probglelnsity  aAnother interesting question that has attracted reseexdhe
function (PDF) are hardly known. Due to such a difficultyyhat should be the minimum delay to achieve asymptotically
analyzmg Lévy walk is generally considered to be verfigher throughput tha®(1/,/n), the per-node throughput of
challenging. o _ o static networks. This has been studied under the notion of
Our main contribution is to analytlcally derive Importankyitical delay [5], [6] for two families of random mobility
tradeoffs between delay and capacity for both Lévy mabilityogels:hybrid random walkandrandom direction The hybrid

models. An important point in this tradeoff is the “criticalangom walk model splits the network of size 1 with cells
delay” which is the minimum delay for a mobile networkyng further splits a cell inta!~2% subcells forg € [0,1/2].

to obtain a larger throughput tha(1/./n). Our technique Then a node moves to a random subcell of an adjacent cell in
involves (i) analyzing the joint spatio-temporal PDF ofmét  eyery unit time slot. In this model, i.i.d. mobility correspds
varying location of a node and the diffusion equation of thg, 3 =0 and random walk mobility corresponds fo= 1/2.
node for Lévy flight angl (ii,) characterizing an embeddeﬂoranyﬂ € [0,1/2], critical delay is proved to b& (n29). The
Markov process inherentin Lévy walk which is a semi-Markoyangom direction model chooses a random direction within
process. Since a different value of induces a different (o 971 and moves to the selected direction with a distance of
mobility pattern, it also induces a different critical dela ,,—v \ith a velocity n=1/2 for v € [0,1/2]. In this model

Below we summarize our main results. random waypoint and Brownian motion are represented with

[ Mobility | a | Critical Delay | ~ =0 and~ = 1/2, respectively. The critical delay is proved
Lévy walk [ a € (0,1) CIVD) to be ©(n'/27).
ac(l,2] O(n*/?)
| Levy flight | @€ (0,2] | ©(n*?) | [1l. M ODEL DESCRIPTION

Given that many human mobility traces are shown to ha\'f‘(‘-f System Model

values ofa between 0.53 and 1.81][7], according to our results, We consider a wireless mobile network indexed hy
mobile networks assisted by human mobility have critici¥here in then-th network,n nodes are distributed uniformly
delays betwee®(n°27) and ©(n%°'). Note that our results ©n a completely wrapped-around squaén) whose width
give much more detailed prediction of the critical delay fornd height scale ag/n and the density is fixed to 1 with
such mobile networks depending erwhile Brownian motion increasingn | Without loss of generality, we set the width
and random waypoint always sha(n) and®(n??) for their and the height of the squai(n) as \/n. We assume that
critical delays [[6]. all nodes are homogeneous in that each node generates data

The rest of the paper is organized as follows. We firgfith the same intensity to a per-source destination. Thé&giac
overview a list of related work in Secti@d Il and introduce ougeneration process at each node is assumed to be independent
system model in SectiopJIl. More details of Lévy mobilityof node mobility.
model parameterized by are described in Sectidn]V, and A source-to-destination packet can be delivered by either
the critical delays under Lévy flight and Lévy walk ardlirect one-hop transmission or over multiple hops, sdyops,
investigated in Sectiorls]V ardd VI, respectively. Finallg w ,_ _

This model is often referred to as an extended network mddelnother

prov!de a hlgh level mFerpretaﬂon _Of our main results ”ﬂ\odel, called a unit network model, the network area is fixed tand the
Section VIl and concluding remarks in Section VIII. density increases aswhile the spacing and velocity of nodes scaldl Ag/7.



using relay nodes. We call &-hop relay transmission. We where D_..; ;) is the individual packet delay that a packet
assume that all nodes can serve as relay nodes for otheesoesperiences to arrive at a destination nadeom its source
nodes and the nodes serving as relay nodes can only forwaodle undetr.
packets rather than replicating packets (not to overprethe \\, ive special attention to the notion of critical delaystfir
same packets in the network). : ; .
- A introduced in [[6]:

To model interference in wireless networks, we use the N N )
protocol model as in(J1], under which nodes transmit packet P&finition 3 (Critical delay): The critical delay in then-
successfully at a constant rake bits/sec, if and only if the th network, denoted byri(n), is the minimum average delay
following is met: let X, (¢) (¢ R?) denote the location of that must be tolerated under a given mobility model to achiev
nodei(i = 1,...,n) at time ¢ (> 0). For a transmitteri, @ Per-node throughput of(1//n), i.e.,
a receiverj and every other nodé ## i,j transmitting A .

: Cn(n) = inf
simultaneously, {mELAL (n)=w(1/v/7)}

d(Xx (1), X;(t)) = (14 A) d(Xi(t), X;(1)), . ,

Per-node throughpud(1/+/n) is achievable by a schedul-
whered(z,y) denotes the Euclidean distance between locgy scheme in static multi-hop networksl [1]. Since node
tionsz,y € R?, andA is some positive number. mobility can increase per-node throughput at the cost glar

A packet can be delivered through a scheduling scherggjay, the critical delay quantifies the amount of delay that
which consists ofeplication or forwarding We assume that network should sacrifice to achieve the guaranteed “baselin
only source nodes replicate packets and all other relaysogfr-node throughput. It can be used as a simple, yet useful
forward them. As the names imply, replication copies getric for a mobility model, representing how sensitive the
packet and the packet transmitter keeps the packet, whiereagelay is to increase per-node throughput.
forwarding the transmitter does not keep the original packe computing critical delay consists of multiple steps. We
after successful transmission. This selective replicaiod gtgyt by following the initial step in[]5],[[6] which connext
forwarding depending on the node type are often applied {gtical delay to the first exit time. LeD(n) denote a disc
suppress the overflow of redundant packets in the netwoyinin the squareS(n) whose radius scales &/n). Critical
Packets are delivered in two waysighbor capturandmulti- delay can simply be regarded #e maximum time duration
hop capture In neighbor capture, using mobility, relay Ofhat a node cannot exit from the dig(n) with probability
source nodgs are Iocatedlwithin the communication raf‘geéﬁproaching 1 asn goes tooco. In our extended network
the destination. In the multi-hop capture, a source estaétia odel, the average distance from a source node to a destinati
multi-hop path to the destination and delivers the packe¢s 0 oge is© (/) when they are uniformly distributed afi(n).
the path. We assume a fluid packet model [19] so that th@erefore, if nodes travel up to a distar@é,/n), for a certain
delivery can occur immediately even in the case of multi-hqgne duration, the distance between a source or a relay and
capture because the transmission delay is negligible coedpay gestination still remain®(,/n) on average which results
to the delay from node mobility. We denote blythe class of j, O(1/y/n) per-node throughput (see Lemrh 1). Thus, it
all scheduling schemes conforming the descriptions aboveis gpvious that a network aiming at obtaining1//n) per-

node throughput must allow a delay which is no less than the
B. Performance Metrics maximum time duration that the first exit of a node from the

The primary performance metric in many networking sysdiscD(n) does not occur with probability approaching 1. This
tems is per-node throughput measured by the long-term avigsight can be formally described with the notion of the first
age of received packets aggregated over nodes: exit time:

Definition 1 (Per-node throughput):et A (n) denote the  Definition 4 (First exit time):Let X;(0) = «. The first exit
per-node throughput in the-th network under a schedulingtime for a disc of a radius, denoted by'(r), is defined as
schemer € II. It is then given by

n T(r) = inf{t > 0: X;(t) ¢ B(z,r)},
A e . 1 /\Trz(t)
Az(n) = liminf — Z ,

t—oo 1 4 t
1=1

where B(z, r) denotes the set of poingg in S(n) such that

. . . dlx,y) <r.
where \..;(¢) is the total number of bits received at a dest|-( y =

nation nodei up to time¢ underr Without loss of generality, we set the radius of the dixe:)
ascgy/n Wherec, is a constant in the rang®, 1/2). Then,

Another important metric is average delay: critical delayCrr(n) can be obtained by

Definition 2 (Average delay)Let D, (n) denote the aver-
age delay in then-th network under a scheduling scheme Cr(n) = sup {t(n) . lim P{T(cqv/n) > t(n)} = 1}.
m € IL. It is then given by n—oo

1Nl & D Lemma 1 ([1], [5]): Suppose that on average each packet
EZ EZ (6,9) is relayed over a total distance no less thaf/n) in an

extended network model. Then, the per-node throughpuy
SFor simplicity, we omit the subscript in A (n) unless confusion arises. scales 339(1/\/5)

=1
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IV. MOBILITY MODELS; LEVY FLIGHT AND LEVY WALK we have

L) for a € (0,2),

In this section, we formally definéévy mobility model: P(Z> 2} c(n) -(z%—\%;)a
c(n) - (erf(=)—erf(—%)) fora=2.

Lévy flight and Evy walk

Lévy flight and Lévy walk processes are treated separately 27 V2o ©)
in the literature[[20]-[22]. Lévy flight takes@nstant timeor
any step irrespective of its step size, whereas Lévy walgsa Here, erf(-) is the error function defined asrf(z) 2
a constant velocityfor every step. Thus, in Lévy walk, thel7T joz exp(—t?) dt, ande(n) is defined a6
time taken for each step is proportional to the step size. ThHe

distinction between Lévy flight and Lévy walk is often made {(1 — 1)t for o € (0,2),

1
based on the speeds of their actual processes. Lévy flight is ¢(n) £ (f—f)a 1 o1
“fast” mobility model which can reach its next destinatiorei (erf(J5,) —erf(357)) for o =2.
constant time no matter how far it is. In a similar contexyl.” Note that asu goes tooo, the CCDF RZ > 2} for z > 1
walk falls under a “slow” mobility model. An experimental , ¢ tol/2* for a € (0,2). -
velocity model suggested as a function of step size[in [ ’
verifies that a human mobility lies in between Lévy flight ang_,e
Lévy walk. For convenience, we use Lévy mobility model ton

indicate both of Lévy flight and Lévy walk, unless expligit each step in Lévy walk is set to 1. Note that as long as these

stated. ) . ) two metrics are constant, the scaling property of criticzlbgl
Let Z be a random variable denoting the step size undgfi5ins the same, which justifies our assumptions.
Lévy mobility model. Then,Z is generated from a random

variable Z having the Lévya-stable distribution[[23] by the

In our analysis, we use the following assumptions on the
vy mobility model: (Al) the time taken for each step in
e Lévy flight is set to 1, and (A2) the velocity taken for

relation Z = |Z|. The PDF ofZ is give by V. CRITICAL DELAY ANALYSIS FORLEVY FLIGHT
1 > In this section, we will show that the critical del&(n)
fy(2) = %/ e ", (t)dt, (1) under Lévy flight with a distribution parameter € (0, 2]
- scales a®d(n?) (Theorem[l). In Section VIA, we explain

technical challenges and our approach for proving Theatem 1
Tz el . In SectioV-B, we prove Theorelnh 1 by showing that the upper

(4) = eletl o
and is given byp,(f) = ¢ . Here, || > 0'is a scale bound onCr(n) scales a®)(n?) (LemmalB), and that the

factor which is a measure of the width of the distributio o
and a € (0,2] is a distribution parameter and specifies trr]]é)wer bound onCn(n) scales as)(n*) (Lemmal4).

shape (i.e., heavytail-ness) of the distribution. The stepZ
for a € (0,1) has infinite mean and variance, while for A Technical Approach
« € [1,2) has finite mean but infinite variance. For= 2, the begin with derivi lation b he fi )
Lévy a-stable distribution reduces to a Gaussian distribution We feglnd\_/wt _er|V|Ing adre ation etwee(gl Le |rstfeX|_t
with zero mean and varianeg = 2¢2, and consequently thetm:]l_e ora 2- |Imen_5|ona:j random proceshs and ¢ e_bone or _|ts
step sizeZ has finite mean and variance. 1;] imensional prolde_;:fte ! process. Vf[/ﬁ :‘[ r?n esg_rl et trgppin
Due 0 the complex o of e distuion he Lewy PO 2 St pocess i v e cnnec
stable distribution fory € (0, 2) is often given asapower-lawI Itis cl If XID'f. itior 1 hl h lona’ ré | Process.
type of asymptotic form, closely approximating the tail tpar tis clear from De initio that the statistica _propneme
Lt 1 . of the first exit time do not depend on the choice of node
of the distribution [[23]: . i . LS
indexi. Thus, we omit the node indéxn the rest of the paper.

where (1) £ E[eitz] is the characteristic function of

1 Denote X (t) = (X.(t), X,(¢t)) and consider the projected
T2(2) ~ |z|1+a’ 2) processe$ X, (t)}i>0 and{X,(t)}+>o ontoz-axis andy-axis,
respectively. We define for the projected processes theefiitst
For mathematical tractability, in our analysis we use thgne similarly to Definition[%:
asymptotic form[{R) instead of the exact forfd (1) fare
(0,2) while using the exact form{1) forx = 2. The form To(r) Zinf {t > 0: | X,(t) — X, (0)] >},
@) is known.to closely approximatEI(l) and several papers T,(r) 2 inf {t > 0 |X,(t) — X,(0)] > r}.
in mathematics and physics, e.d., [[20],1[24], analyze Lévy ‘ ‘ ‘
mobility using form [2). For the range of, since we use Since the event|X,(t) — X,(0)| > r} implies the event
the extended network model, the step sizds assumed to {d(X(t), X(0)) > r}, we obtain
have a lower bound at 1 and an upper boundat, i.e.,

P{1 < Z < y/n} = 18 Thus, the complementary cumulative P{T:(r) <t} < P{T(r) < t}. 4)
distribution function (CCDF) ofZ becomes PZ > 2z} =1
forz<land RZ > z} =0 for z > \/n. Forz € [1,\/n), "To be precisec(n) is also a function ofy, i.e., ¢(n) = c(n, ). Since

we focus on scaling properties with respectritdor a fixed o, we omit the
argumenta in ¢(n, «) for notational simplicity. By the same reason, in the
6The bounds are chosen equivalently to the lower bount)/ gfn and the rest of the paper, we emphasize omlyin all variables that depend on both
upper bound at for the step size in the unit network modgl [6]. n anda.



In addition, it is clear that In the case of Lévy flight, the joint spatio-temporal PDF
has a similar form to that of Brownian motion. In addition,

P{T(r) <t} < P{Tu(r/V2) < tor Ty(r/\@) =1 the occupation probabilities and the first exit time disttibns
< 2P{T.(r/V2) < t}, (5) for Brownian motion and Lévy flight have similar structures

where the second inequality comes from the union bound aill?dthe aspect ,OT the domingtin_g terms. Henf:e, by identifying
d characterizing the dominating term for Lévy flight, vemc

the symmetry of node motion. Combinirid (4) ahdl (5), we ha ) . B .
for al)llt >0 4 ! inirig (4) ahtf (5), w obtain the critical delay under Lévy flight.

P{T,(r) <t} <P{T(r) <t} <2P{T,(r/v2) <t}. (6) .
B. Analysis

Our technical approach is mainly based @h (6), and is to . , . )
bound the first exit time distribution for 2-dimensionaliye !N this subsection, we provide the detailed result for the
flight by the one for the corresponding 1-dimensional prigjeic critical delay under Lévy flight. Our main result is derivied

process{ X, (#)};>0. We henceforth study the first exit timefollowing three steps: (i) the occupation probability is@ahbed
distribution for the process X, (t) 1o from the solution of a differential equation that governs th

The first exit time analysis for 1-dimensional random prdpovement of a particle. (i) From the occupation probapilit

cesses has been intensively studied in physics and mathet& OPtain the survival probability (which will be defined
ics, e.g.,[25]. Specifically, trapping phenomenon (of dusif Iate_r), Wh|_ch in turn yl_elo!s_ the first gxn time dls_trlbutlo_(ln)_
ing particle) in physics and its related theories have actiire?y Investigating the limiting behavior of the first exit time
connection to our first exit time problem as explained in thdistribution, we can finally obtain the order of the critical
following: consider a particle that diffuses in a finite intal elay.
[0,2r] (C R) having trapping boundaries at = 0,2r. Let Step liLet P(z,t) & &P{L(t) < z}. Intuitively, P(z,t)
L(t) (¢ R) be a random variable denoting the location of theepresents probability that the particle is located at timet.
particle at timet. The particle is assumed to be initially locatedVe call P(z,¢) the occupation probability and it has the
at L(0) = r, and eventually it is trapped at either of botHollowing properties:
!ooqndaries Wi.th propability 1. Upon the particle is trap,pgd o (P1)lim;o0 P(z,t) =0 Va € R.
it d|s_appears in _the mterv_al. We call the state .of the plartic (P2) f02r P(z,0)de = P{L(0) = r} = L.
survival stateuntil the particle is trapped and disappears. By 2r

. A o o C i ) (P3) [, P(z,t)dz <1Vt > 0.
convention, we let.(t) £ @ if the particle is not in survival (P4) P(0,1) = P(2r ) = 0 ¥t > 0.
state at time. If we assumeX,(0) = L(O).(: r), thenX,(¢) . (P5) Sin’ceP(x,O) i’s 2 PDF h_aving a suppofft}, we
and L(¢) for ¢ > 0 are related as follows: haveP(z,0) = 05, whered,, ,, denotes the Kronecker
d {Xm(t) if ¢ < Tp(r), delta which is defined to be 1if; = 2 and 0 otherwise.

L(t) = 2] if t>T,(r), (7) To be preciseP(x,t) for t > 0 could not be a PDF due to

(P3). However, the function obtained by normalizifgx, t)
where 2 denotes “equal in distribution”. Hence, we havavith the integraIfOQT P(z,t) dx, denoted byP(z,t), becomes
from (@) that a PDF for a finite timet. We call P(x,t) the joint spatio-

_ - temporal PDFat locationz and timet.
P{TL(r) =1} = P{L(H) = &} ®) In the first step, we obtain the occupation probabiftty:, ¢)
That is, the survival time of a particle in the trapping modebr the process L(¢)}:>o. For this, we need to characterize
has the same distribution as the first exit tiifigr) of a node the associated 1-dimensional procgss, (¢)}:>o. We first
under Lévy flight. consider the case af € (0,2) and summarize the result in
The technical approach for analyzing the critical delayhia t the following lemma.
literature is as follows. In the case of Brownian motion réhe
are two general techniques in studying the critical delaye 3 fli

to discretize mobility and then apply a Markovian analy§js [ goes tooc, the projected process onto-axis {X.(f)}iso

The other is to use a continuous mobility model and solve proaches to 1-dimensional Lévy flight having the same

diffusion equation to obtain a joint spatio-temporal PDF g istribution parametet. It holds for the proces&X. (¢
a time-varying location of a nod&][5]. The latter enables one P ' P Xy (1)} 0.

to obtain the distribution of.(t) whose spatial derivative is Proof: Let Z; andd; (i = 1,2, ...) be random variables denot-
often referred to asccupation probabilitl The occupation iNd thei-th step size and direction of the proces¥ ()}:o,
probability of Brownian motion can be decomposed to find tH&SPectively. ThenX (¢) for ¢ = 1,2, ... can be expressed as
components constituting it. From this decomposition pssce o

we find that there is a dominating term which characterizes X(t) = (Xa(t), Xy(#)

L . . s . . . t t
the limiting behavior of the first exit time distribution. — X(0)+ <Z 7, cos 0. ZZi sin9i> ©
i=1 i=1

8The occupation probability in a trapping model correspotwshe joint
spatio-temporal PDF in a random walk model. The matheniatiefinition W il sh h bi . f
and the distinction between the occupation probability #reljoint spatio- e will show that, asn goes tooo, arbitrary step size o

temporal PDF will be given in Sectidn VB. the projected processes (i.¢;| cos6;| and Z;|sin 6;]) has a

Lemma 2:Suppose thaf X (¢)},>¢ is 2-dimensional Lévy
ght with a distribution parametes. € (0,2). Then, asn



power-law type CCDF with an exponeat i.e., forz > 1, scale factor|c| approaches to zero, the 2-dimensional Lévy
flight converges to a Wiener process which mathematically
models a continuous movement of Brownian motion. Since
1-dimensional projected process of 2-dimensional Brownia
motion is also Brownian motion [5], the occupation probigpil

wherecr & 2 f% (cos¥)>dd. Since the projected processeéor o = 2 is governed by the normal diffusion equation where
T JO )

take a constant time for every step irrespective of step si38€ Spatial derivative of order with o € (0,2) in (13) is
the property in[{I0) proves the lemma. replaced by the second order derivative with= 2 [25].

Now we prove [(ID). By conditioning on the values of thé[herefore, with continuous limit, thg occupation prob’mjoi_l
random variablef; ~ Uniform[0,2x], we can rewrite the £ (%.%) for a € (0,2] can be described by the differential
CCDF of Z,| cos 0;| as equation in[(ZB). Through AppendiX A, we show that the order

) of the critical delay under Lévy flight does not change with
/ P{Z;| cos ;| > 2| 0; = 0}dFy, (v) continuous limit. _ _

0 Applying the standard method of separation of variables
gives the solution of {13) as follows:

lim P{Z;|cosf;| >z} = lim P{Z;|sinf;| > 2}
n— 00 n—oo
- (10)

P{Z;| cosb;| > z}

1 27
%/0 P{Z;| cosv| > z}dv

_2 / P{Z; cosd) > z}do), (11)

P(z,t) =Y hihi(z) exp (A Ft) . (14)

T Jo i=1

where the last two equalities come from the independenidere, h; (i = 1,2,...) are determined from the initial condi-

of the random variablesZ; and ¢;, and the symmetry of tion P(z,0) = d, . (as shown in (P5)) and are given by =

the function|cos |, respectively. Using[{3), the probability?:(r). The functionsy;(x) and the constants; can be ob-

P{Z; cos¥ > z} in (1) can be obtained fof < [0, 5] as tained from the solutions of the probledy; (z)] = A\ivi(x)

for the operato® £ dldwﬁ and are called eigenfunctions and

P{Zicosd > 2} eigenvalues of, respectively. Without loss of generality, we

_ {c(n) () — (75)*) for g €[0,cos7(Z)),  assume thah; are arranged as\i| < [Xof <---.

0 for ¥ € [cos™! (%), Z]. Step 2:Let S(t) = P{L(t) # o}. Intuitively, S(t)
represents probability that the particle has not hit anypieg

Hence, the CCDF £Z;| cos ;| > 2} is given by boundary by timet. We call S(¢) the survival probability

2¢(n) cos ™ (F5) N The survival probability can be obtained from the occupatio
P{Zz| COS 91| > Z} = s / (COS 19) dv pl’ObabllltyP(x,t) by S(t) _ fOZT P(I,t) da. ThUS, fromm),
2¢(n) 5 (12)  the survival probability is given by
—1
- COS ——
m(v/n)" (ﬁ)

0 2r
S(t)=> i(r) [ i(x)dwexp(\Ft).  (15)
Noting lim,, . ¢(n) = 1 andlim,,_,, cos™* (i) =3, we i—1 0

\/ﬁ
have from [IP) that The first exit time distribution PT,.(r) <t} can be obtained

. 2 3 o c* from the survival probabilityS(¢) through the following

Since|sin ;| 2 | cos ;| for 6; ~ Uniform[0, 27], we have P{T,(r) <t} =P{L(t) = @} =1—5(¢). (16)

P{Zi|sin0;| > 2} = P{Z;| cos 0;| > 2}, Here, the first equality comes froifl (8) and the second egualit
which completes the proof. comes from the definition_ob_*(t). By combining [I5) and

. _(@4), we obtain the first exit time distribution in terms ofth

Motivated by Lemmdl2 and(7), we study the occupatiofgenfunctionsy; () and the eigenvalues; as follows:

probability for 1-dimensional Lévy flight withh € (0,2)
in a finite interval [0,2r] having trapping boundaries. For i 2r
mathematical tractability, our study in this subsectiosuases P{T,(r) <t} =1-— Zlﬁi(r} . Yi(z)dr exp (AiFt). (17)
continuous limit where the scale factot in () approaches to =1
zero. Then, the occupation probabiliy(z, ) for a € (0,2) For a = 2, the eigenfunctions and the eigenvalues[inl (17)
is governed by the following fractional Fokker-Planck equaan be obtained from the boundary conditioR$0,t) =
tion [22, Eq. (22)],[[26, Eq. (28)]: P(2r,t) = 0 ¥Vt > 0 (as shown in (P4)), and are given by

OP(x,t) 0%P(z,t) vi(z) = \/;sin (Zz) and \; = — (%)2 respectively[[25].

=F 13 : ! .
ot |z« 7 (13) For a € (0,2), Gitterman [[26] provided a solution of {113)
whereF (= F,, > 0) is a generalized diffusion coefficient andVhose e!genfuncuons and glgsnvalues a-lre giverplty) =
—aﬁ:\a is the Riesz-Feller derivative of fractional orded27]. 1sin (Z2%) and \; = — (1£)", respectively. Thus, under

We next consider the case of = 2. In this case, as the Lévy flight with o € (0, 2], the first exit time distribution can



be expressed as an infinite series of exponential functisnslet é F(m/2cq)*¢(7)° (> 0). Then, thei-th function of the
follows: seriesS(n) is bounded by a constant; £ 2 {exp(—m)}’ for
all n > n as follows:

= Pi
PIL.(r) <t} =1- mexp (—Lt),  (18) b Y|4 P
1= 3 — t < = _ A €
| e (~gmion) | = 2o (o)
wherer); £ 2l1=coslml} iy, (i) andp; £ F(Z)>. 4 Fi(m)?, ...
As will be shown later in the proof of Lemm&s 3 and 4, e 4(cq)? &(n)
the smallest (i.e., dominant) decay rate in the exponential — L

functions in [T4) (i.e.|\,|) determines the limiting behavior of
the first exit time distribution. That is, the smallest decate Here, the first inequality comes from the bounplg| <
characterizes the critical delay under Lévy flight. Thaiiohs % Vi € N and [I9), and the second inequality comes from
in [25], [26] show that the dominant decay rafe | scales as the bounds? > i Vi € N andn® > (7)€ ¥n > 7. Note that
O(r—) for a € (0,2]. the seriesy >°, M; converges since it is a geometric series
Step 3:We are now ready to derive the main result ofvith @ common raticexp(—n) & (0,1). Since the target of
this subsection. By using the closed-form expression f8#€ functions is a complete normed vector space, the infinite
P{T,(r) < t} in (I8), we investigate the order of the critica[se”ess(”) converges uniformly orD. Consequently, we can

delay, stated in Lemmas 3 afH 4. interchange the order of limit and summation, and we have
Lemma 3 (Upper bound fordvy flight): Suppose that un- lim P{T,(cqv/n) < t(n)}
der Lévy flight with a distribution parameter € (0, 2], the e
time t = #(n) in P{T(cqy/n) > t} scales a®(nz*<) for an =1~ lim 5(n)
arbitrarye > 0. Then, we have i 0
. =1—->» n lim exp (— . t(n)) .

Jim P{T(cqv/m) > i(n)} =0, = T\ (e
which shows that the critical delag;(n) under Lévy flight Sincei(n) = ©(n'*<), we furthermore have
scales a®)(n?). ..

. : . lim exp | — pi t(n) ] =0
Proof: We will prove this lemma by showing that n—00 (ca)®n ’

lim,, s P{T:(cqy/n) < t(n)} = 1. Then, by substituting

r = Cd\/ﬁ andt _ f(n) intO E) and tak|ng a ||m|t tO'I’L, which giVeSlimn*)OO P{Tz(Cd\/ﬁ) S tA(TI,)} = 1. This com-

pletes the proof forv = 2.

we obtain ) -
Next, consider the case of € (0, 2). Similarly to the proof
1= lim P{Ty.(cav/n) <t(n)} for « = 2, we can prove this case by substituting= c4\/n
nee andt = i(n) into (I8) and showing that

< lim P{T(cav/n) < i(n)}.

lim P{T,(cqv/n) <t(n)} = 1. (20)
That is, lim,, o P{T'(cqy/n) < i(n)} = 1, or equivalently, nee

lim,, ;o0 P{T(cqr/n) > t(n)} = 0, which proves the lemma. Since the dominant decay rate,| scales asO(r—*) =

First, consider the case of = 2. We substitute = ¢;,/n  ©(n~ %), by using approaches in the proof for = 2, we

andt = f(n) into (I8). Then, the series on the right-hangan show[(20). Due to similarities, we omit the details.[]
side of [18) becomes a function of, and (for notational  Lemma 4 (Lower bound fordvy flight): Suppose that un-

convenience) we let der Lévy flight with a distribution parameter € (0, 2], the

time t = £(n) in P{T(cqy/n) > t} scales a®(n? <) for an

P{Tu(cav/n) < f(n)} =1- niexp (— (65;2n£(n)) arbitrarye > 0. Then, we have
i=1

29 4(n). Tim P{T(cav/n) > 1(n)} = 1,

We now need to take a limit to§‘(n). To validate the which shows that the critical dela§/;(n) under Lévy flight

interchange of the order of limit and summation, we wiFcales as(nz).
show that there exists a constaft € N such that the Proof: We will prove this lemma by showing that
infinite seriesS(n) converges uniformly o 2 [, 00)8 The im0 P{Tw(cav/n/V/2) < #(n)} = 0. Then, by substituting
uniform convergence will be shown by using the well-knowti = cay/7 andt = t(n) into (6) and taking a limit ton, we
Weierstrass\/ test [28]. obtain

i 7 _ 1+e H P - 5
é >S I(? Cs?.lf:(hn%ha_t O, there exist constants < I and lim P{T(cqv/n) < #(n)} <2 lim P{Ti(cav/n/V2) < #(n)}

. =0.
t(n) > éen'te forall n > f. (29) .

That is, lim,,—, P{T(cq/n) < t(n)} = 0, or equivalently,
°N denotes a set of positive integers. lim,, 00 P{T'(car/n) > #(n)} = 1, which proves the lemma.



First, consider the case aof = 2. We substituter = Since the dominant decay rat@,| scales as©(r—%) =
cav/n/\/2 andt = £(n) into (I8). Then, the series on the rightO(n~%), by using approaches in the proof far = 2, we
hand side of[(1I8) becomes a functionsaf and analogously can show[(Z2R). Due to similarities, we omit the details.]

to the proof of Lemmal3, we let Combining Lemmak]3 arld 4 yields the following theorem.
z _ S z Theorem 1: The critical delay Cri(n) under Lévy flight
{Te(cav/n/V2) < ()} ;77 P ( (n)) with a distribution parameter « € (0, 2] scales a®(n z).
21— S(n). Remark 1:The main idea behind the proof of Lemnids 3
Similarly to the proof of Lemma&l3, we will show that ther
exists a constant € N such that the infinite series(n)
converges uniformly oD £ [, 00).

and[4 was that the smallest decay rate in the exponential
Sunctions in [IB) (i.e.,2L) determines the limiting behavior
of the first exit time distribution. That is, the smallest dgc
Sincet(n) = ©(n'~¢), there exist constantsd € N and
¢ > 0 such that
f(n) >cnl—e

2pi
(ca)®n

rate characterizes the critical delay under Lévy flight.

VI. CRITICAL DELAY ANALYSIS FORLEVY WALK
for all n > n. (22) ) ] ] »
In this section, we will show that the critical del&(n)

For a technical purpose for showing the uniform convergenggyder Lévy walk with a distribution parameter scales as

we restrict ~thiz domain ofzﬁs D4 = [7, d] fpr an arbitrary g (p3) for a € (0,1) and©(n?) for « € [1,2] (Theoren{R).

d>mn. Letm = F(m/v/2¢q)*ed=¢. Then, thAel;th function of |n Section[VI-A, we explain technical challenges and our

the seriesS(n) is bounded by a constant; = - {exp(—7)}'  approach for proving Theorefd 2. In Section MI-B, we prove

for all n € D, as follows: Theoreni® by showing that the upper bound@n(n) scales
2pi i 4 200 _ 1_. asO(nz) for o € (0,1) andO(n?) for o € [1,2] (Lemmd®),

TP T )0 (n) 7 PP\ T ez ™ and that the lower bound ofiri(n) scales as(nz) for

4 Fi(m)? . a € (0,1) andQ(n2) for « € [1,2] (LemmalT).

—exp | ————5c¢cd

s 2(cq)?

IN

IN

= M,. A. Technical Approach

Here, the first inequality comes from the boungls < 4 Vi € We first explain the technical challenges that preclude the

N and [21), and the second inequality comes from the bouri&€ of our technique for Lévy flight as well as other conven-

i2>iVieNandn ¢ > d Vn € Dy. Note that the tional techniques. We next explain our technical approach t

seriesy >, M, converges since it is a geometric series witfeal with these challenges. The techn}ical challenges are tw
a common raticxp(—7i2) € (0,1). Hence, the infinite series f0lds and are mainly inherent in the Lévy walk nature.

S(n) converges uniformly oD,. Sinced is arbitrary, we get (i) We begin with the description of differences between
uniform convergence of. Consequently, we can interchangé-€Vy flight and Lévy walk from a modeling perspective. Let

the order of limit and summation, and we have
lim P{T,(cqv/n/V2) < i(n)}
n— o0
=1- nhﬂngo S(n)

> . 2p; -
=1- ;m nlgxgo exp (— (cd)gnt(n)> .

Sincet(n) = ©(n'~), we furthermore have

2p; -
li - ¢ =
i esp (~ i) =<1

which gives
Jim P{T(cav/n/V2) < Em)} = 1= 3

Note from [I8) that PT,(cqyv/n/v2) < 0} =1 —
In addition, it is obvious that I}, (cqv/n/v2) <
Therefore, we havéim,, ., P{T,(cqv/n/v2) <
This completes the proof far = 2.

Next, consider the case of € (0,2). Similarly to the

t; (i = 1,2,...) denote the time instant when thieth step
begins. We take the time; as the embedded point of the
process X (¢)},>0, and focus on the corresponding embedded
process{E;};cn 2 {X(t;)}ien. Under both Lévy mobility
models, at each embedded paiptthe destination of the next
step of thei-th step (i.e.,E;;1) is chosen independently of
the past locations at time < ¢; and depends only on the
current location at time = ¢;. That is, the embedded process
{E;}cn satisfies the following Markov property:

PlEi =z |Ej=z5,j=1,...,1}
=P{E1 =z | Ei =z}

Thus, under both Lévy mobility models, the process
{X (t;) }ien becomes a discrete-time Markov chain. However,
the fact that the embedded poihtis chosen in a different
way for Lévy flight and Lévy walk incurs the key challenge.
In the case of Lévy flight, it is chosen deterministically as
t; = i — 1. Therefore, Lévy flight is a discrete-time Markov
process. However, in the case of the Lévy walk, the embedded
point is chosen stochastically and is correlated with step s

proof for « = 2, we can prove this case by substitutings follows:t; = Z;;ll Z; (where Z; is a random variable

r = cqy/n/V/2 andt = £(n) into (I8) and showing that
lim P{T;(cav/n/V2) < i(n)} =0. (22)

denoting thej-th step size). Therefore, the Lévy walk is a
semi-Markov proces$ [20] whose embedded process becomes
Lévy flight.



Lemma 5:E[N(n)] scales a9 (n?) for a € (0,2].
Proof: From LemmalB, we havéim,, ., P{Tir(csyv/n) <

t(n)} = 1 wheni(n) = ©(n3+¢) for a € (0,2] and an
%4 / arbitraryé > 0. Hence, we have
7>
Za cafn E[TLF(Cd\/ﬁ)] = O(n%Jré) (26)
“ 4 From Lemmd¥, we havém,, ., P{Tir(cqv/n) > t(n)} =1

whent(n) = ©(n%~¢) for a € (0,2] and an arbitrary > 0.
Thus, we have

E[Tir(cav/n)] = Q(n? ). (27)
Fig. 2. An example of the random variable&(n) (= 4), Zi andZy (). By choosingé andé arbitrarily small, from [2B) and{27), we
have
(i) The proof of LemmdXP also shows that, for a given 2- E[Tir(cavn)] = O(n2) Va € (0,2]. (28)

dimensional Lévy walk, its 1-dimensional projected psses

also have a power-law type of step size distribution. Howeve'z\lote from [23) that

the velocity of thg prpjec_ted processes is not.a copstant E[Tir(cavn)] < E[N(n)] < E[Tir(cav/n)] + 1, (29)

for every step, which implies that neither of 1-dimensional .

projected processes of 2-dimensional Lévy walk can be Which shows that the order of [ (n)] is the same as that of

dimensional Lévy walk. E[T_r(cqv/n)]. Therefore, combinind(28) and(29) yields the
Consequently, the technique used for Lévy flight in thi€mma. 0

paper is not applicable because it requires decouplingadesp  With the help of Lemm&]5, we can derive an upper bound

and time. In addition, the occupation probabilityz, ) is not  for the critical delay under Lévy walk.

available and the derivation is not mathematically traletab | emma 6 (Upper bound forédvy walk): Suppose that un-

To cope with these technical challenges, we propose a difer Levy walk with a distribution parameter, the time
ferent approach based on a stochastic analysis technique ch 2 {(,) in P{T(cq\/n) > t} scales a®(n2+<) for an
acterizing the embedded Markov process of a semi-Mark@wpitrarye; > 0 anda € (0,1), and©(n % +<2) for an arbitrary
process. Specifically, our approach is to derive a relatign > o anda € [1,2]. Then, we have
between the first exit time under Lévy flight (i.e., embedded . .
Markov process) and that under Lévy walk (i.e., semi-Marko nhjgo P{T(cav'n) > t(n)} =0,
process). From this relation, our technique derives a tight . . i
upper bound for the critical delay. Then, by combining th\é'i"fh shsgwslth?t the crgu:lal de(;agﬂ(g) ]:mder L?vyz/ walk
upper bound and a lower bound for the critical delay inferretf®'®> &% (nz) for a 6_( 1) an (n=) fora e [1,2].
from our analytical result of Lévy flight in Sectidfl V, we carProof: Using Markov's inequality[[29], we have
provide the exact order of the critical delay under Lévykval A

PT(cav) > i(n)} < SV (a0
t(n)

We calculate the expectation/Hcq/n)] on the right-hand
Yide of [30) by conditioning on the values &f(n) as

E[T(cav/n)] = E[E[T (cav/n) | N (n)]]

B. Analysis

Let N(n) be a random variable denoting the number
steps occurred until < T'(cq+/n). Then,

ca/n if N(n)=1,
T = _ 23 >
(cav/) {Zjv_<f>1 Zi+ Zngmy if N(n)>2, (23) =Y E[T(cav/n) | N(n) = k] - P{N(n) = k}.
where Zy(,) is a random variable denoting the moving = (31)

distance during theV(n)-th step until exiting the dis®(n)
(See Fig[R.). Note thaZ ., is not identically distributed From [23), we have fot: = 1,

with Z;, and we have E[T(cay/n) | N(n) = k] = cqv/n. (32)
ZN(n) < 2ca/n with probability 1 (24)  1In addition, from [ZB), we have fok = 2,3, ...,
The random variabléV(n) is closely related to the first exit E[T(cav/n) | N(n) = k]
time under Lévy flight, denoted by r(cq+/n), as follows: N1
N(n) 2 [Tie(cav/n)], (25) =E [ Y Zi+Znw | Nn) = k]
i=1

where [x] denotes the smallest integer larger than or equal
to z. In Lemmal®, we derive the order of[E(n)], which
will be used to study the critical delay under Lévy walk.

E

-1
= ) E[Z;|N(n) = k] + E[Zx| N(n) = k]. (33)
1

%
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The random variableg; (i = 1,...,k—1) andZ; in (33) are Thus, we have fron{(35) anfl (36) the following:

correlated with the random variablé(n) (= k), whereas the E[T(cay/7)]

random variable<; (i = k+ 1,k+2,...) are independent of lim —————=

N(n) (= k). Specifically, fori = 1,...,k — 1, the step size e t(n)

Z; should be less than the diameter of the di3) (i.e., < lim 268V +E[Z|Z < 2cav/n] - E[N(n)]
2c¢q+/m). In addition, the truncated step sizg should satisfy T n—oo t(n)

the inequality in[(24). Hence, the conditional expectation =0.

the right-hand side of(33) are bounded as follows:
Therefore, from[(30), we have

E[Zk|N(n) = k] < 2cav/m, neoo o i(n)
i.e., limy, 00 P{T'(cay/n) > #(n)} = 0. This completes the
whereZ denotes the generic random variable #{ Com- proof. 0

bining (31)-{34), we obtain an upper bound fofTEc,/n)] Lemma 7 (Lower bound fordvy walk): Suppose that un-
as follows: der Lévy walk with a distribution parameter, the time
t 2 i(n) in P{T(cq\/n) > t} scales asd(nz—<) for an

E[T(cav/n)] arbitrarye, > 0 anda € (0, 1), and®©(n= —2) for an arbitrary

< cqvn-P{N(n) =1} +2 \/—iP{N( - €2 >0 anda € (1,2]. Then, we have
= Gavn: n) =1} + 2cqv/n n) —
d = Jim P{T(cav/n) > Hn)} =1,

+E[Z|Z < 2¢qv/n] Z(k —1)-P{N(n) =k} which shows that the critical dela§/;(n) under Lévy walk
k=2 scales a$)(nz) for a € (0,1) andQ(n?) for a € [1,2].
> Proof: We will prove this lemma by showing for each of the
< ch\/ﬁ; P{N(n) = k} cases ofx € (0,1) anda € [1,2] that
=1

lim P{T(ca/m) < i(n)} = 0.

+E[Z|Z < 2¢av/n] Y _k-P{N(n) = k}
k=1 We first consider the case of € (0, 1). Since a Lévy walker

= 2cq\/n + E[Z|Z < 2¢qv/n] - E[N(n)]. (35) moves with a constant velocity = 1, it takes at leastq/n
time to exit from the dis®(n). Thus, it is obvious that
Using [3), we can calculate the conditional expectation PIT(co/m) < ca/mt = 0 37
E[Z|Z < 2c¢q4y/n] in B8) and it scales for each € (0,2] ) {1 (cav/n) < cav/n} (37)
as follows: Sincet(n) = ©(nz~%), there exists a constant € N such
thatt(n) < cqv/n for n > fi. Hence, we have fon > 7
E[Z|Z < 2cav/n P{T(cav/n) < i(n)} < P{T(cav/n) < ca/n}.  (38)
1—a
%Wi)jo} forOéG(O, )7 ini i imi
B a(21 (jgc;\/ﬁ) Combining [3¥) and{38) and then taking limits, we have
_ogleCavn) fora=1 ~
_ ) T=(cay/m) 1 ; . - < 1
=9 o T oy for o € (1.2, nhﬂngo P{T(cqv/n) < t(n)} < nl;rrgo P{T(cav/n) < cav/n}

a—1 1—(2¢cqg/n)—« o
@ cxp(fld/Zcrz)7cxp(72(cd)2n/a'2) - 0’

for a = 2,
v (1_:§§;dM/U)7°rf(l/ﬂg) i.e., lim, o P{T(cqy/n) < t(n)} = 0. We have proved the
O(n ) forae(0l), lemma in the case af € (0, 1).
=4 06(og(n))  fora=1, We next consider the case af € [1,2]. In the following,
O(n?) for o € (1, 2]. we use the notations g(-) andTw(+) to distinguish the first

exit times between Lévy flight and Lévy walk. We will show
Since BN (n)] scales a®(n?) by Lemmdb, the term on the based on[(23) and (PS) that for> 0,

right-hand side of[(35) scales as P{Tiw(cavn) <t} < P{Tir(cqav/n) <t +1}. (39)
. From [23), if N(n) = 1, thenTiw(cav/n) = cq/n > 0 =
2eav'n + E[Z|Z < 2eu/n] - EIN(n) Nin) ~ 1 In additon, if N(n) > 2, then Tuw(cay) =
©(n2) for a € (0,1), SN Zi4 Zy > SN 7, > N(n)—1, where the last
={0O(nzlog(n)) fora=1, (36) inequality comes from the assumption that the step Sites
O(n?) for a € (1,2]. a lower bound at 1 (given in SectignllV). Combining above

two cases gives

(7, | N(n) = k] = E[Z] for i = k+ 1,k +2,--- . Tiw(cayn) > N(n) — 1.
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TABLE |

n a=9 n EXPERIMENTAL o« VALUES FOR DIFFERENT SITES PRESENTEDIM.
o > [ Site [ o ] Site | o ]
<
2 _ 2 KAIST | 0.53 | New York City | 1.62
= nd )  nd : NCSU | 1.27 | Disney World | 1.20
2 @€ (0,2) = ae(01) State fair 1.81
S : S :

0 i 0 . . -

" J 3 " | } that critical delays for human mobility range fra@n(n°-27) to

o o ©(n%°1). Human mobility mainly hag > 1, in which case a
(a) Lévy flight (b) Lévy walk longer delay thar®(/n) is needed. This implies that it may

be hard to design a low delay protocol for mobile networks
under human mobility.
Our contribution is not restricted to the mathematical\deri

From [25), we obtainV(n) d [Tir(cay/n)] > Tir(cqy/m). tion of delay scaling for new mobility models. We provided

Fig. 3. Critical delays under Lévy flight and Léevy walk foiffdrent .

Thus, we have with probability 1, techniques that connect the diffusion equation of a cootisu
time random walk to the delay scaling as well as that analyze
Tiw(cav/n) > Tir(cav/n) — 1. the delay scaling of semi-Markovian movements. We expect

This proves[(39). Substituting= #(n) into (33), we obtain that our techniques can be further developed to the analysis
of other detailed performance metrics such as contact time

P{Tiw(cav/n) < t(n)} < P{Tir(cav/n) <t(n)+1}. (40) distribution and the generalized delay-capacity traddoff

For i(n) scaling as©(n% ), i(n) + 1 also scales as various levels of per-node throughput.
©(n%~<). Consequently, by Lemnia 4, the probability on the Future work includes investigation of throughput and delay

right-hand side off{40) becomes in the limit: scaling for mobile networks with heterogeneous and caVlect
. ~ node mobilities. In addition to the recent research topics o
Jim P{Tir(cav/n) <i(n) +1} = 0. “per-node throughput scaling” under inhomogeneous spatia

node distributions (i.e., Cox process, Neyman-Scott @m®ce

- : ) Matérn cluster process and Thomas process), €.0., [30], [3

t(n.)} = 0, which proves the lemma in the casecf [1,2]. our paper can be an important step to the study of delay

This completes the proof. scaling under such heterogeneous networks. There is ahtnsi
Combining Lemmagl6 arfd 7 yields the following theorenfyom [g] that in human-assisted networks, the actual delays
Theorem 2: The critical delay Cri(n) under Léevy walk might be even shorter. This is because human mobility is not

with a distribution parameter « scales as©(nz) for completely random: people tend to visit the same locations

Therefore, from [(40), we havéim,, . P{Tiw(ca/n) <

O

a € (0,1) and ©(n?) for a € [1,2]. and regularly meet a group of people every day. Althouglr thei
mobility can be characterized by heavy-tail distributicihese
VII. DISCUSSION regularity in daily mobility significantly facilitates rdung of

We summarize the high-level interpretations of this papdtackets among people (as long as they are socially conrected
Fig.[3. shows the critical delays under Lévy walk and L'ev'}l,'herefore, there remains a possibility of designing a lolayle
flight, parameterized by. Lévy flight shows that the critical Protocol for mobile networks under heterogeneous human
delay proportionally increases with However, in the case of Mobility by judiciously utilizing these social factors.
the Lévy walk, we can find a phase transition such that when
a € (0,1), the critical delay is constantlp(nz) and shifts
to the proportional increasing phase whenc [1,2]. Two
different scaling regions are essentially related to the llat ~ We have presented Lévy mobility models consisting of Lévy
the mean step size of Lévy walk fare (0, 1) is infinite but flight and Lévy walk parameterized by and studied the
finite for a € [1,2]. In contrast to Lévy walk, the travel time critical delay under both mobility models. Lévy mobilitg i
independence of step size in Lévy flight leads to continuokfown as a realistic human mobility so that the critical glela
scaling overa. Note that fora = 2 (i.e., Brownian motion) we provided here can be essential in designing an architectu
our result coincides with that ir [6] which also studied th@nd protocols of a wireless mobile network. The insight that
critical delay under Brownian motion. the critical delay scales @(n?) for Lévy mobility models

By using values ofx from experimental measurements fronin the range ofa € [1,2] is especially important because
[7], we can see how network delay scales with human mobilify is anticipating that the delay of mobile networks with
in practice. To give an insight to the readers, we shew human mobility (e.g., smartphone networks, pocket swilche
values measured from five different sites in Table | prefdi‘ntﬁetworks) could be quite high in practice, considering the
in [7] with a flight extraction method, “rectanglBl. We see values measured in real traces. The insight tells that mobil

1 _ __networks operated by human mobility patterns may need to
We do not present values from other extraction methods If [7] which

intentionally exclude some detailed motions of real tradescapture specific prepare an alternative path for delay sensitive data_ aS.aB:e”
behaviors of humans, one can borrow thesealues. even for delay tolerable data whose tolerance level is dichit

VIII. CONCLUSION
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where the second inequality comes frdml (43). Substituting
cay/n andk = t(n) into (@4), we have

CONTINUOUS LIMIT

In Section[¥, we have studied the critical delay under
Lévy flight using continuous limit. By following the tectque ) )
in [6], we can study the critical delay without continuous
limit (i.e., with a non-zero scale factde|) and can derive a In the following, we will derive a bound for [EZ cos 6)2].
lower bound for the critical delay under Lévy flight. Lemia Kince B(Z cos 9)'2] — E[(Z] cos 6])2], we have
summarizes the result.

Lemma 8:With a non-zero scale factdt|, the critical delay
Cri(n) under Lévy flight with a distribution parameter €

(0,2] scales ajﬂ(ni)' . _We first consider the case of € (0,2). From the CCDF of
Before proving the lemma, we give a remark. The scallng| cosd| given forz > 1 in [@2), we have for > 1
property of the critical delay with continuous limit (shown - ' -
dFZ\ COSG\(Z)

in Theorenl) works as an upper bound for the one without
continuous limit. Hence, the result in Lemina 8 shows that our dz
analysis in Sectiol V gives the tightest upper bound, which

justifies our technique using continuous limit. We now give

the proof of Lemma&J8.

Proof: Similarly to the proof of Lemma&l4, we will prove this
lemma by showing that

P{T:(cav/n/V2) < i(n)}

) (ca)’n
< 2t(n) exp (‘ 81(n)E[(Z cos 0)?]

(45)

vn

Z2dFZ|cos€|(Z)- (46)

E[(Z cosh)?] = /

0

d
= —&P{Z|cosb‘| >z}

/cosl(ﬁ)
0

ac*e(n)
Za-i—l

Thus, the integral on the right-hand side bfl(46) is bounded

_ 2ac(n)

(cos)“dd

ﬂ-ZoHrl

lim P{T;(cav/n/V2) < i(n)} =0, (41)

wheret(n) = ©(n% ~¢) for an arbitrarye > 0 anda € (0, 2].
Then, from [6), we obtaiim,, ., P{T(c4y/n) < t(n)} <
21imy, o0 P{T:(cav/n/v/2) < #(n)} = 0. That is, we
have lim,, o, P{T(cay/n) < t(n)} 0, or equivalently,
lim,, o0 P{T(cay/n) > t(n)} = 1, which shows that the
critical delayCri(n) scales a2(n?).

Without loss of generality, we assurd0) = (0,0). Then,
from (@), X,.(¢) for t =1,2,... can be expressed as

t
X, (t) = Z Z; cos0;. (42)
i=1
Let Z cos @ denote the generic random variable f6fcos 0;.
By the independence of random variablés and 6, the
mean of Z cosd is given by BZ cos0) E[Z]E[cos 0]
0. Hence, from [(4R), the mean of(,(¢{) is given by
E[X.(t)] = tE[Z cosb) 0 and the variance ofX,(t)
becomes EX,(t))?] tE[(Z cos0)?]. Thus, Hoeffding’s
inequality [6] gives an upper bound for{ R, (t) > r/v/2}

as follows: R X, (t) > r/v/2} < exp (—Wi}bm . By
the symmetry of node motion, we have
,,,2
P{| X.(t)] > 2} <2 . (43
(0] 2 1/} < 20 (- grgrreorn ) @9

Due to (Al), the even{T,(r/v2) < k} for k = 1,2,...
implies the evenUf:1{|Xm(t)| > r/v/2}. Hence, we have

k
P{T,(r/V2) <k} <D P{X,(t)] > r/V2}

t=1
k .2
=2 ; P <_ 8tE[(Z cos 9)2]>
). @

r

< .
< Zhoxp < 8kE[(Z cos 6)?]

above by

Vn 5
/ z dFZ|cos€|(Z)
0

1 Vn
/ Z2dFZ| cos OI(Z) + / szFZ\ cosé\(z)
0 1

Vi ac*e(n)

< P{0 < Z|cosh| < 1}+/
1

Sotl
= P{0 < Z|cosf| <1} + 0420%0(2)(”1_% L
from which we have
E[(Zcosf)?] =0(n'~%) forae(0,2). (47)

We next consider the case @f= 2. By following the approach
in the case ok € (0,2), we have

E[(Z cos6)?] = O(n'~ %)

Combining [4Y) and{48) gives[EZ cos6)?] = O(n'~%) for
a € (0,2]. Hence, there exist constants= N and¢ > 0 such
that

for a = 2. (48)

E[(Zcosh)?] <en'~% forall n> . (49)

In addition, sincef(n) = ©(n2 <), there exist constants €
N andé > 0 such that

t(n) <én®=¢ forall n>n. (50)

By (49) and [[5D), the term on the right-hand side [of] (45) is
further bounded by

2t(n) exp (‘ Sg(n)éﬁi;:os 0)?] ) (51)
< 2én% “exp (‘ (c;);n) '



By L'Hospital's rule, [51) becomes in the limit as

Combining [4b) and[(82) prove$ (41). This completes ﬂ}?o]
O

lim 2¢(n)exp

n—oo

(~seiizesap)

2, €
< lim 2én® ¢ exp (—M> =0.

n—r00

(52)

proof.
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