Towards utility-optimal random access without message passing

J. Liu¹, Y. Yi², A. Proutiere³, M. Chiang¹*,† and H. V. Poor¹

¹Department of Electrical Engineering, Princeton University, Princeton, NJ, U.S.A.
²Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea
³Microsoft Research, Cambridge, U.K.

Summary

It has been recently suggested by Jiang and Walrand that adaptive carrier sense multiple access (CSMA) can achieve optimal utility without any message passing in wireless networks. In this paper, after a survey of recent work on random access, a generalization of this algorithm is considered. In the continuous-time model, a proof is presented of the convergence of these adaptive CSMA algorithms to be arbitrarily close to utility optimality, without assuming that the network dynamics converge to an equilibrium in between consecutive CSMA parameter updates. In the more realistic, slotted-time model, the impact of collisions on the utility achieved is characterized, and the tradeoff between optimality and short-term fairness is quantified. Copyright © 2009 John Wiley & Sons, Ltd.

KEY WORDS: CSMA; distributed control; network utility maximization; optimization; random access; scheduling; stochastic network; wireless network

1. Introduction

The design of distributed scheduling algorithms in wireless networks has been extensively studied under various metrics of efficiency and fairness. In their seminal work [1], Tassiulas and Ephremides developed a centralized scheduling algorithm, Max-Weight scheduling, achieving throughput optimality, i.e., stabilizing any arrival for which there exists a stabilizing scheduler. Since then, a large array of lower-complexity, more distributed scheduling algorithms has been developed, using the ideas of randomization (pick-and-compare scheduling), weight approximation (maximal/greedy scheduling), or random access with queue-length exchanges [2–11], to achieve large stability region under unsaturated arrivals of traffic at each node in the network. For saturated arrivals, maximizing a utility function, which captures efficiency and fairness at the equilibrium, has been studied for slotted-Aloha random access [12–17]. Together with the principle of ‘Layering as Optimization Decomposition’, advances in scheduling have also been translated into improvements in joint congestion control, routing, and scheduling over multihop wireless networks [18–22]. There are many more studies on this topic, as discussed in surveys such as [23].

*Correspondence to: M. Chiang, Department of Electrical Engineering, Princeton University, NJ, U.S.A.
†E-mail: chiangm@princeton.edu

Copyright © 2009 John Wiley & Sons, Ltd.
A main bottleneck remaining in all the aforementioned studies is the need for message passing. Tradeoffs of the time complexity of message passing with throughput and delay have been studied recently in References [7,6,24,25]. Message passing reduces the ‘effective’ performance, is vulnerable to security attacks, and makes the algorithms not fully distributed. This naturally leads to the following question on “simplicity-driven design”: Can random access without message passing approach some type of performance optimality? The answer was suggested to be positive last year, first in Reference [26] for wireless network, with a similar development in a different context in Reference [27]. A convergence proof for algorithms and an analysis of the achieved tradeoff between efficiency and short-term fairness have been presented in Reference [28], based on which this paper is developed.

In this paper, we first provide a review of the literature related to random-access based scheduling schemes for wireless networks. We then extend the algorithms in Reference [26], and develop a proof of the convergence of these algorithms. The proof does not assume that the network dynamics converge in between updates of the carrier-sense-multiple-access (CSMA) parameters, and holds for the continuous-time Poisson clock model. Finally we turn to more realistic discrete-time contention and backoff models, and quantify the effect of collisions. We reveal and characterize the tradeoff between long-term efficiency and short-term fairness; short-term fairness decreases significantly as efficiency loss is reduced. Similar to other distributed scheduling algorithms, there is a 3-dimensional tradeoff [24]: the price of optimality without message passing is delay experienced by some nodes.

The rest of this paper is organized as follows. In Section 2 we review the literature related to random-access based scheduling algorithms in wireless networks. In Section 3, we describe the system model and the Utility-optimal CSMA (UO-CSMA) algorithms, and prove the convergence of this class of algorithms. In Section 3.5, we further study the impact of collisions in the discrete-time model, and quantify the tradeoff between long-term efficiency and short-term fairness. We conclude with a discussion of future directions on this topic in Section 4. The theory of UO-CSMA has also started to be bridged to the practice of wireless scheduling in practical networks, with implementation over conventional 802.11 hardware as recently reported in [29].

2. Random-access Based Scheduling

2.1. Slotted Aloha

The simplest random access medium access control (MAC) protocol for wireless systems is slotted Aloha, in which time is slotted and at the beginning of each slot, each link accesses the channel with a given probability, should the corresponding transmitter have some packets to send.

Assume that we have L links and initially that the transmission probabilities $p = (p_1, \ldots, p_L)$ on the links are fixed. If links are always backlogged, then the long-term throughput achieved on link l, $\mu_l(p)$, is given by

$$\mu_l(p) = p_l \prod_{l \in I(l)} (1 - p_l)$$

(1)

where $I(l)$ denotes the set of links interfering with link l. We now introduce the rate region Λ_{sA} of slotted Aloha algorithms as the set of rate vectors $\mathbf{\mu}(p) = (\mu_1(p), \ldots, \mu_L(p))$ that can be achieved on the various links for all possible values of the transmission probabilities p:

$$\Lambda_{sA} = \{v \in [0, 1]^L | \exists p \in [0, 1]^L, \text{ s.t. } v \leq \mathbf{\mu}(p)\}$$

(2)

where in the above expression, \leq is taken component-wise. Note that Λ_{sA} is not convex and is strictly included in Γ, the set of achievable rates using centralized scheduling algorithms (see Section 3 for a formal definition). In Figure 1, we stress the difference between Λ_{sA} and Γ for the simple network of two interfering links. This difference illustrates the well-known inefficiency of slotted-Aloha protocols. All scheduling schemes based on these protocols inherit this inefficiency.

In Reference [12], the authors consider networks with saturated arrivals and single-hop connections, and aim at identifying the Proportional Fair point in Λ_{sA}.

![Fig. 1. Γ and Λ_{sA}.](image)
Because of the non-convexity of Λ_{sA}, the problem has to be modified (a change in variables) so as to make the underlying optimization problem convex. It has been shown in Reference [13] that the problem of identifying the α-fair point in Λ_{sA} can be transformed to a convex program provided that $\alpha \geq 1$. The algorithm proposed in Reference [12] to achieve Proportional Fairness consists of adapting the transmission probabilities on each link, but requires the use of message passing.

In Reference [30], the authors reverse-engineer the commonly used Exponential Back-off (EB) algorithm in slotted Aloha, i.e., they discovered the selfish utility maximization problems implicitly solved by the EB algorithm, and showed that the resulting Nash equilibrium is generally not optimal in network utility.

The aforementioned results have been generalized to the case of multi-hop connections, see References [8,11] and apply to the case of unsaturated sources. To simplify the exposition, we restrict our attention to the case of the single-hop interference model.

Step 1. Compute the normalized queue length $0 \leq x_l(t) \leq 1$ using queue lengths of the interfering neighbors via message passing:

$$x_l(t) = \frac{Q_l(t)}{\max\left[\sum_{k \in A(tx(l))} Q_k(t), \sum_{k \in A(rx(l))} Q_k(t)\right]}$$

where $tx(l)$ and $rx(l)$ refer to the transmitter and the receiver of a link l.

Step 2. Contends for each mini-slot m with probability $p_l = f(x_l(t), M)$ for a given function f, if the contention signals from its interfering links are not sensed prior to the mini-slot m.

The function $f(\cdot)$, referred to as the access function, controls the aggressiveness of the medium access algorithm and must be appropriately chosen to strike the balance between collisions and channel utilization. We may classify the algorithms in the literature according to the choice of the access function. Two types of access functions have been considered so far:

Type I:

$$f(x_l(t), M) = g(M) \frac{x_l(t)}{M}$$

where $g(\cdot)$ is an increasing function.

In Type I algorithms, the choice of $g(M) = 1$ considered in Reference [8] leads to a $(1/3 - 1/M)$-throughput optimal scheduling scheme. The authors in Reference [8] further show that $g(M) = (\sqrt{M} - 1)/2$ results in a $(1/2 - 1/\sqrt{M})$-throughput optimal scheduler. Using Type II algorithms, the authors of Reference [10] show that with $g(M) = \log(2M)/2$, the achieved throughput ratio is at least $1/2 - \frac{\log(2M)}{2M}$, which outperforms Type I algorithms.

Type II:

$$f(x_l(t), M) = 1 - \exp\left(-g(M) \frac{x_l(t)}{M}\right)$$

2.2. Random Access Schemes with Constant Time Control Phase

The inefficiency of slotted-Aloha stems from the inevitable collisions and a lack of proper contention control. Interfering links with non-negligible transmission probabilities experience frequent collisions. To alleviate this problem, some authors propose to divide each time slot into two parts: a control part and a transmission part. The control part has M mini-slots, where M is a parameter. The M mini-slots are used to sense the neighborhood activities, and decide the schedule of data transmissions. Here we survey this method using the algorithms proposed in References [8,11] and apply to the case of unsaturated sources. To simplify the exposition, we restrict our attention to the case of the single-hop interference model.

Let $A(v)$ be the incident links to node v. In each slot t, each link l performs the following:

Step 1. Compute the normalized queue length $0 \leq x_l(t) \leq 1$ using queue lengths of the interfering neighbors via message passing:

$$(3)$$

where $tx(l)$ and $rx(l)$ refer to the transmitter and the receiver of a link l. The function $f(\cdot)$, referred to as the access function, controls the aggressiveness of the medium access algorithm and must be appropriately chosen to strike the balance between collisions and channel utilization. We may classify the algorithms in the literature according to the choice of the access function. Two types of access functions have been considered so far:

Type I:

$$f(x_l(t), M) = g(M) \frac{x_l(t)}{M}$$

where $g(\cdot)$ is an increasing function.

In Type I algorithms, the choice of $g(M) = 1$ considered in Reference [8] leads to a $(1/3 - 1/M)$-throughput optimal scheduling scheme. The authors in Reference [8] further show that $g(M) = (\sqrt{M} - 1)/2$ results in a $(1/2 - 1/\sqrt{M})$-throughput optimal scheduler. Using Type II algorithms, the authors of Reference [10] show that with $g(M) = \log(2M)/2$, the achieved throughput ratio is at least $1/2 - \frac{\log(2M)}{2M}$, which outperforms Type I algorithms.

Type II:

$$f(x_l(t), M) = 1 - \exp\left(-g(M) \frac{x_l(t)}{M}\right)$$

where $g(\cdot)$ is an increasing function.

In Type I algorithms, the choice of $g(M) = 1$ considered in Reference [8] leads to a $(1/3 - 1/M)$-throughput optimal scheduling scheme. The authors in Reference [8] further show that $g(M) = (\sqrt{M} - 1)/2$ results in a $(1/2 - 1/\sqrt{M})$-throughput optimal scheduler. Using Type II algorithms, the authors of Reference [10] show that with $g(M) = \log(2M)/2$, the achieved throughput ratio is at least $1/2 - \frac{\log(2M)}{2M}$, which outperforms Type I algorithms.

2.3. CSMA

The random access algorithms presented in Section 2.1 and Section 2.2 have suboptimal, performance and require message passing. One may wonder whether it is possible to design distributed schedulers achieving near optimal, performance without using message passing.

1. A scheme is γ-throughput optimal if for any vector λ in Γ, the scheme stabilizes the system for an arrival rate vector $\gamma \times \lambda$.

Copyright © 2009 John Wiley & Sons, Ltd.

DOI: 10.1002/wcm
In References [33–35], it has been shown that even non-adaptive CSMA algorithms, where each link accesses the channel with a fixed probability, are able to provide average throughputs close to optimality. Using adaptive CSMA protocols without message passing, it has been recently suggested in References [26,27] that one could fill this optimality gap. The idea behind the algorithms presented in these papers is similar to that developed by Hajek in Reference [36], where a simulated-annealing approach is used to realize Max-Weight schedules.

More precisely, when the problem is to stabilize the network in the case of unsaturated users, the authors of References [27,37] propose to adapt the users’ access rates as a function of their buffer sizes. When the number of packets waiting in a user’s buffer becomes large, this user becomes more aggressive and increases its channel access rate. As discussed in Reference [34], one issue is that when the buffer of a given user becomes large, its channel access rate should also become large. Consequently, to ensure queue stability and to control the system behavior for arbitrarily large buffers, one needs to design a CSMA protocol with arbitrarily large access rates. This is made possible in References [27] and [37] by implementing idealized continuous-time CSMA algorithms, in which Poisson clocks are used to control the channel accesses, and to ensure zero collisions. In practice, however, time is slotted and collisions cannot be avoided. More recently, Reference [38] proposed a throughput-optimal algorithm in the slotted-time model, but requires the use of RTS/CTS-like message passing. Related work also includes Reference [39] that proposed asymptotically throughput-optimal when there exists a large number of nodes, and Reference [40] that improves throughput and fairness by reducing exposed and hidden nodes in 802.11 networks.

In Reference [26], the authors developed distributed utility-optimal algorithms in the case of saturated users, also leveraging the simulated annealing technique. The proposed algorithms are adaptive CSMA without message passing in the idealized continuous-time model. In Reference [28], based on which this paper is written, we presented a proof of convergence under no timescale separation and an analytical quantification of the impact collisions in a slotted-time system. Recall that the timescale separation assumption states that in between two updates of the CSMA parameters, the network dynamics converge immediately to an equilibrium distribution. In practice however, the network dynamics can be represented by a Markov process whose convergence to its stationary regime is not instantaneous. In the present paper, we provide a formal proof of convergence of adaptive CSMA-based algorithms that are extensions of those proposed in Reference [26], without the timescale separation assumption. The proof is based on recent advances in the understanding of stochastic approximation algorithms with controlled random noise, see Reference [41]. The proposed algorithms are then shown to maximize network utility in the continuous-time model. In the slotted-time model, a tradeoff between long-term efficiency and short-term fairness is revealed.

3. UO-CSMA (Utility-optimal CSMA)

3.1. Model and Objective

3.1.1. Model

We consider a wireless network composed of a set \(\mathcal{L} \) of \(L \) links. Interference is modeled by a symmetric, boolean matrix \(A \in \{0, 1\}^{L \times L} \), where \(A_{kl} = 1 \) if link \(k \) interferes with link \(l \), and \(A_{kl} = 0 \) otherwise. Define by \(\mathcal{N} \subset \{0, 1\}^L \) the set of the \(N \) feasible link activation profiles, or schedules. A schedule \(m \in \mathcal{N} \) is a subset of non-interfering active links (i.e., for any \(m \in \mathcal{N} \), \(m_k = 1 \) implies that \(A_{kl} = 0 \)). We assume that the transmitters can transmit at a fixed unit rate when active. The network is assumed to handle single-hop data connections. However, the results here can be extended to multi-hop connections. The transmitter of each link is saturated, i.e., it always has packets to send. A scheduling algorithm decides at each time which links are activated.

3.1.2. Objective

Denote by \(y^s = (y^s_l, l \in \mathcal{L}) \) the long-term throughputs achieved by scheduling algorithm \(s \) on the various links. The throughput vector of any scheduling algorithm has to belong to the rate region \(\Gamma \) defined by

\[
\Gamma = \left\{ y \in \mathbb{R}_+^L : \exists \pi \in \mathbb{R}_+^N, \forall l \in \mathcal{L}, y_l \leq \sum_{m \in \mathcal{N}, m_l = 1} \pi_m, \sum_{m \in \mathcal{N}} \pi_m = 1 \right\}
\]

In the above, for any schedule \(m \in \mathcal{N} \), \(\pi_m \) can be interpreted as the proportion of time schedule \(m \) is used.
activated. As often in the case of saturated users, the objective is to design a scheduling algorithm maximizing the total network-wide utility. Specifically, let \(U : \mathbb{R}^+ \rightarrow \mathbb{R} \) be an increasing, strictly concave, differentiable objective function. We wish to design an algorithm solving the following optimization problem:

\[
\max \sum_{l \in \mathcal{L}} U(\gamma_l), \quad \text{s.t.} \quad \gamma \in \Gamma
\] (4)

We denote by \(\gamma^* = (\gamma^*_l, l \in \mathcal{L}) \) the optimizer of Equation (4). Most distributed scheduling schemes proposed in the literature to solve Problem (4) make use of a dual decomposition of the problem into a rate control and a scheduling problem: a virtual queue is associated with each link; a rate control algorithm defines the rate at which packets are sent to the virtual queues, and a scheduling algorithm decides, depending on the level of the virtual queues, which schedule to use with the aim of stabilizing all virtual queues. The main challenge reduces to developing a distributed and efficient scheduling algorithm.

3.2. Efficiency of CSMA

CSMA-based random access algorithms are the most widely used distributed scheduling algorithms in wireless networks. They are based on random backoff algorithms such as the Decentralized Coordinated Function (DCF) in IEEE802.11. The two basic principles behind CSMA schemes are: (i) to detect whether the channel is busy before transmitting, and to refrain from starting a transmission when the channel is sensed busy, and (ii) to wait a random period of time before any transmission to limit the probability of collisions.

The network dynamics under CSMA have been extensively studied in the literature. The following model is due to Kelly [42], and has been recently revisited by the authors of the References [33] and [35]. In this model, the transmitter of link \(l \) waits an exponentially distributed random period of time with mean \(1/\lambda_l \) before transmitting, and when it initiates a transmission, it keeps the channel for an exponentially distributed period of time with mean \(\mu_l \). This CSMA algorithm is denoted by CSMA(\(\lambda_l, \mu_l \)) in the rest of the paper. Define \(\lambda = (\lambda_l, l \in \mathcal{L}) \) and \(\mu = (\mu_l, l \in \mathcal{L}) \). When each link \(l \) runs CSMA(\(\lambda_l, \mu_l \)), the network dynamics can be captured through a reversible process [43]: if \(m^{\lambda,\mu}(t) \) denotes the active schedule at time \(t \), then \((m^{\lambda,\mu}(t), t \geq 0) \) is a continuous-time reversible Markov chain whose stationary distribution \(\pi^{\lambda,\mu} \) is given by

\[
\forall m \in \mathcal{N}, \quad \pi^{\lambda,\mu}_m = \frac{\prod_{l|m_l=1} \lambda_l \mu_l}{\sum_{m \in \mathcal{N}} \prod_{l|m_l=1} \lambda_l \mu_l}
\]

where by convention \(\prod_{l \in \emptyset} (\cdot) = 1 \). It is worth noting that due to the reversibility of the process, the above stationary distribution does not depend on the distributions of the back-off durations or of the channel holding times, provided that they are of mean \(1/\lambda_l \) and \(\mu_l \), respectively, for link \(l \). This insensitivity property allows us to cover a more realistic scenario with uniformly distributed back-off delays and deterministic channel holding times.

Under the above continuous-time model, collisions are mathematically impossible, leading to tractability as a first step of the study. In practice, however, time is slotted and the back-off periods are multiples of slots, which inevitably causes collisions. The impact of collisions is discussed in detail in Section 3.5.

Under the CSMA(\(\lambda_l, \mu_l \))’s algorithms, the link throughputs are given by

\[
\forall l \in \mathcal{L}, \quad \gamma^*_l = \sum_{m \in \mathcal{N}/m_l=1} \pi^{\lambda,\mu}_m
\]

An important result, proved in Reference [26] (Propositions 1 and 2), states that any throughput vector \(\gamma \in \Gamma \) can be approached using CSMA(\(\lambda, \mu \)) algorithms. More precisely, we have:

Lemma 1 [26]. For any \(\gamma \) in the interior of \(\Gamma \), there exist \(\lambda, \mu \in \mathbb{R}_+^L \) such that

\[
\forall l \in \mathcal{L}, \quad \gamma_l \leq \gamma^*_l
\]

The above lemma expresses the optimality of CSMA scheduling schemes, and it suggests that for approaching the solution of Problem (4), one may use CSMA algorithms.

3.3. Utility-optimal Adaptive CSMA Algorithms

We now describe a generalized, adaptive CSMA-based algorithm to approximately solve Equation (4). The algorithm is an extension of those proposed in Reference [26], and does not require any message passing. Time is divided into frames of fixed durations, and the transmitter of each link updates its CSMA...
parameters (i.e., λ_l and μ_l for link l) at the beginning of each frame. To do so, it maintains a virtual queue, denoted by $q_l[t]$ in frame t, for link l. The algorithm operates as follows:

UO-CSMA

1. During frame t, the transmitter of link l runs CSMA($\lambda_l[t], \mu_l[t]$), and records the amount $S_l[t]$ of service received during this frame;
2. At the end of frame t, it updates its virtual queue and its CSMA parameters according to

 \[
 q_l[t + 1] = q_l[t] + \frac{b_l[t]}{W(q_l[t])} \times \left(U^{-1} \left(\frac{W(q_l[t])}{V} \right) - S_l[t] \right)^{q_{\text{max}}} - q_{\text{min}}
 \]

 and sets $\lambda_l[t + 1]$ and $\mu_l[t + 1]$ such that their product is equal to $\exp\{W(q_l[t + 1])\}$.

In the above algorithm, $b : \mathbb{N} \to \mathbb{R}$ is a step size function; $W : \mathbb{R}^+ \to \mathbb{R}^+$ is a strictly increasing and continuously differentiable function, termed the weight function; V, q_{min}, and q_{max} are positive parameters, and $|\cdot|^d_c \equiv \max(d, \min(c, \cdot))$. We will later see that proper choice of stepsizes b ensures convergence. The parameter V controls the accuracy of the algorithm.

Since the performance of CSMA algorithms depends on the products $\lambda_l \mu_l$ only, we have the choices in UO-CSMA to either update the λ_l’s (the contention intensities) and fix the μ_l’s (the transmission durations), or to update the μ_l’s and fix the λ_l’s, or to update both the λ_l’s and μ_l’s.

3.4. Convergence Analysis

UO-CSMA may be interpreted as a stochastic approximation algorithm [44]. More precisely, we show that UO-CSMA is a stochastic approximation algorithm with controlled Markov noise as defined in Reference [45]. The main difficulty in analyzing the convergence of UO-CSMA lies in the fact that the updates in the virtual queues, and hence in the CSMA parameters, depend on the random service processes $(S_l[t], t \geq 0)$. The service processes $(S_l[t], l \in \mathcal{L})$ received by the various links in turn depend on the state of the network at the end of frame $t - 1$, and on the updated CSMA parameters $(\lambda_l[t], \mu_l[t])$. The convergence proof would have been much simpler if we could assume that the network dynamics converge instantaneously in between CSMA parameter updates, i.e., if we could assume that $S_l[t]$ is the service received by link l averaged over the stationary distribution $\pi^{\lambda_l[t], \mu_l[t]}$. But, this assumption is not realistic in wireless networks.

For any vector $q \in \mathbb{N}^L$, we denote by π^q the distribution on \mathcal{N} resulting from the dynamics of the CSMA(λ, μ) algorithms, where for all $l \in \mathcal{L}$, $\lambda_l \mu_l = \exp(W(q_l))$. In other words,

\[
\forall m \in \mathcal{N}, \quad \pi_m^q = \frac{\exp\left(\sum_{l \in \mathcal{L}} W(q_l) \right)}{\sum_{m' \in \mathcal{N}} \exp\left(\sum_{l \in \mathcal{L}} W(q_l) \right)}
\]

We also denote by $\gamma_l[t] = (\gamma_l[t], l \in \mathcal{L})$ the vector representing the cumulative average throughputs of the various links up to frame t, i.e.,

\[
\forall l \in \mathcal{L}, \quad \gamma_l[t] = \frac{1}{t} \sum_{n=0}^{t-1} S_l[n]
\]

To prove the convergence of UO-CSMA, we will need the following assumption.

Assumption 1. If $q^0 \in \mathbb{R}_+^L$ solves, $W(q_l^0) = VU(\sum_{m=1}^L \pi_m^0)$, for all $l \in \mathcal{L}$, then $q_{\text{min}} \leq q_l^0 \leq q_{\text{max}}$, for all $l \in \mathcal{L}$

Note that, for example, if the utility function U is such that $U'(0) < +\infty$, then Assumption 1 is satisfied when $q_{\text{min}} \leq W^{-1}(VU'(1))$ and $q_{\text{max}} \geq W^{-1}(VU'(0))$. The next theorem states the convergence of UO-CSMA under diminishing step-sizes, towards a point that is arbitrarily close to the utility-optimizer.

Theorem 1. Assume $\sum_{t=0}^\infty b[t] = \infty$ and $\sum_{t=0}^\infty b[t]^2 < \infty$. Under Assumption 1, for any initial condition $q[0]$, UO-CSMA converges in the following sense:

\[
\lim_{t \to \infty} q[t] = q_* \quad \text{and} \quad \lim_{t \to \infty} \gamma_l[t] = \gamma_*, \quad \text{almost surely},
\]

where γ_* and q_* are such that (γ_*, π_γ) is the solution of the following convex optimization problem (over γ and π):

\[
\max \sum_{l \in \mathcal{L}} U(\gamma_l) - \sum_{m \in \mathcal{N}} \pi_m \log \pi_m
\]

such that $\gamma_l \leq \sum_{m \in \mathcal{N}} \pi_m$ and $\sum_{m \in \mathcal{N}} \pi_m = 1$. (6)

Copyright © 2009 John Wiley & Sons, Ltd.
Furthermore, UO-CSMA approximately solves Problem (4) as

$$\left| \sum_{t \in \mathcal{L}} (U(\gamma_t,i) - U(\gamma_t^*)) \right| \leq \log |\mathcal{N}|/\mathcal{V}. \quad (7)$$

Proof. As an important step, we show that in UO-CSMA, the random services $S_l[t]$’s achieved under the CSMA algorithms can be averaged as if the frame t were long enough so that the $S_l[t]$’s reach their ergodic averages. We also show that the evolutions of the CSMA parameters $\lambda_i[t]$ and $\mu_i[t]$ asymptotically approach deterministic trajectories (see Lemma 2). In the second step, we prove that the resulting averaged algorithm converges to the solution of Equation (6).

To do this, we use a similar approach as that used in Reference [26]. The main contribution in our proof is in Step 1.

Step 1. From the discrete-time sequence $(q[t], i \geq 0)$, we define a continuous function $\tilde{q}(\cdot)$ as follows. Define for all n, $t_n = \sum_{i=1}^{n} b[i]$, and for all $t_n < t \leq t_n+1$,

$$\tilde{q}_l(t) = q_l[n] + (q_l[n+1] - q_l[n]) \times \left(\frac{t - t_n}{t_{n+1} - t_n} \right)$$

(8)

Also define $S_l(t) = S_l[n] 1_{t_n \leq t < t_{n+1}}$.

Lemma 2 (Convergence and averaging). Fix $\tau > 0$. Denote by \bar{q} the solution of the following system of stochastic differential equations: For all $l \in \mathcal{L}$,

$$\dot{q}_l = \left[U^{*-1}(W_l(q_l)/V) - S_l(t) \right]$$

$$\times \frac{1_{[q^\text{min} \leq q \leq q^\text{max}]} W_l(q_l)}{W_l(q_l)} \quad (9)$$

with $\tilde{q}(\tau) = \tilde{q}(\tau)^\dagger$. Then we have that, for all $T > 0$,

$$\lim_{\tau \to \infty} \sup_{t \in [\tau, \tau + T]} \|\tilde{q}(t) - \tilde{q}(\cdot)\| = 0 \quad a.s. \quad (10)$$

Furthermore, almost surely, every limit point of the trajectories of (9) is a fixed point of the following system of ordinary differential equations (o.d.e.’s): For all $l \in \mathcal{L}$,

$$\dot{q}_l = \left[U^{*-1}(W_l(q_l)/V) - \sum_{m \in \mathcal{N} \setminus \{l\}} \pi^l_m \right]$$

$$\times \frac{1_{[q^\text{min} \leq q \leq q^\text{max}]} W_l(q_l)}{W_l(q_l)} \quad (11)$$

Lemma 2 shows that the trajectory of the continuous interpolation \tilde{q} of the sequence of the virtual queues q asymptotically approaches that of \bar{q}. Furthermore, the fixed points of Equation (9) are basically those of Equation (11). Note that in the latter o.d.e.’s, the service $S_l[t]$ received on each link is averaged with respect to (w.r.t) the stationary distribution $\pi^{\text{eq}}(\cdot)$ (as if the virtual queues were frozen). Proving this averaging property constitutes the key challenge in analyzing the convergence of UO-CSMA.

Proof of Lemma 2. We attach to each link l a variable $a_l[t]$, where $a_l[t] = 1$ if the link is active at time t (at the end of slot t), and 0 otherwise. Now it can be easily seen that $Y[t] = (S[t], a[t])$ is a non-homogeneous Markov chain whose transition kernel between times t and $t + 1$ depends on $q[t]$ only. The updates of the virtual queues in UO-CSMA can be written as

$$q_l[t+1] = q_l[t] + b[t] \times h(q_l[t], Y_l[t])$$

where

$$h(q, Y) = \frac{1}{W_l(q)} (U^{*-1}(W_l(q)/V) - S_l) \cdot 1_{[q^\text{min} \leq q \leq q^\text{max}]}$$

and where $Y = (S, a)$. As a consequence, UO-CSMA can be seen as a stochastic approximation algorithm with controlled Markov noise as defined in References [41] and [45]. To complete the proof of Lemma 2, we check the sufficient conditions for convergence provided in Reference [41]:

(1) The transition kernel of $Y[t]$, parameterized by $q[t]$, is continuous in $q[t]$ (because the transition rates from one state to another are determined by the $\lambda_i[t]$’s and μ_i’s, which are continuous in the $q_l[t]$’s). Note also that fixing $q[t] = q_0$ for all time t, the obtained Markov chain $Y[t]$ is ergodic (its state-space is finite and it is irreducible) with stationary distribution π^{eq}.
Step 2. To complete the convergence proof, we show as in Reference [26] that Equation (11) may be interpreted as a sub-gradient algorithm (projected onto a bounded interval) of the dual of problem (6). Note that the latter problem is strictly convex, and hence this sub-gradient algorithm will converge to the solution of Problem (6). This will imply that Equation (11) converges to its unique fixed point, and will prove the convergence of UO-CSMA to the solution of Problem (6) in view of Step 1.

The Lagrangian of Equation (6) is given by

$$
L(\gamma, \pi; v, \eta) = \left(\sum_{l \in \mathcal{L}} VU(\gamma_l) - v_l \gamma_l \right) \\
+ \left(\sum_{l \in \mathcal{L}} v_l \sum_{m \in \mathcal{N}, m_l = 1} \pi_m \right) \\
- \sum_{m \in \mathcal{N}} \pi_m \log \pi_m - \eta \left(\sum_{m \in \mathcal{N}} \pi_m - 1 \right)
$$

Then the Karush-Kuhn-Tucker (KKT) conditions of Equation (6) are given by

$$
VU'(\gamma_l) = v_l, \forall l \in \mathcal{L}, \\
-1 - \log \pi_m + \sum_{l, m_l = 1} v_l - \eta = 0, \forall m \in \mathcal{N},
$$

(12) h is continuous and Lipschitz in the first argument, uniformly in the second argument. This can be easily checked, given the properties of the utility and weight functions U and W and observing that we restrict our attention to the compact set $[q_{\min}, q_{\max}]$.

(3) Stability condition: $q_l[t] \leq q_{\max}$ for all $l \in \mathcal{L}$ and $t \geq 0$.

(4) Tightness condition (corresponding to (i) in Reference [41][p. 71]): This is satisfied since $Y[t]$ has a finite state-space (cf. conditions (6.4.1) and (6.4.2) in Reference [41][p.76]).

Having checked these conditions, we can now apply Lemma 4 and Theorem 7 (or Corollary 8) of Reference [41], and the lemma follows. \(\blacksquare\)

In view of Lemma 2, if the system of o.d.e.’s (11) has a unique fixed point q_*, then we would have $\lim_{t \to \infty} q(t) = q_*$. We would also have $\lim_{t \to \infty} q_l[t] = q_l$ a.s. (This can be shown as in Reference [46].)

We introduce the variables q with $q_l = W^{-1}(v_l)$ for $l \in \mathcal{L}$, and the bounds $q_{\max} = W(q_{\max})$ and $q_{\min} = W(q_{\min})$. By choosing

$$
\eta = \log \left(\sum_m \exp \left(\sum_{l, m_l = 1} W(q_l) \right) - 1 \right)
$$

and $\pi = \pi^q$, we solve Equations (13) and (15). Accounting for Equation (14), the sub-gradient of Equation (12) is

$$
\dot{v}_l = \left(U^{-1} \left(v_l / V \right) - \sum_{m \in \mathcal{N}} \pi_m q_l \right)
$$

which is equivalent to Equation (11), provided that $v_l(t)$ remains between $[v_{\min}, v_{\max}]$. Under Assumption 1, the solution $v_\star = (v_\star, l \in \mathcal{L})$ of the dual of problem (6) without the constraints $v_{\min} \leq v \leq v_{\max}$ actually belongs to the interval $[v_{\min}, v_{\max}]$, and is the fixed point of Equation (17). So by convexity of the problem, Equation (17) converges to v_\star, and hence the iterations in Equation (11) converges to q_\star, which concludes the proof of the convergence of UO-CSMA.

To prove the inequality (7), we just remark that Problem (4) is equivalent to the following optimization problem:

$$
\max \quad V \sum_{l \in \mathcal{L}} U(\gamma_l)
$$

s.t. $\gamma_l \leq \sum_{m \in \mathcal{N}, m_l = 1} \pi_m$,

$$
\sum_{m \in \mathcal{N}} \pi_m = 1
$$

Equation (7) is obtained by comparing Problem (6) and Problem (18), and using the fact that the entropy $\sum_m \pi_m \log \pi_m$ is always bounded by $\log |\mathcal{N}|$. The proof of Theorem 1 is complete. \(\blacksquare\)

Under the assumption of Theorem 1, the CSMA parameters of the various transmitters (($\lambda_l[t], \mu_l[t]$, $l \in \mathcal{L}$) are such that their products ($\lambda_l[t] \mu_l[t]$, $l \in \mathcal{L}$) converge to ($\rho_\star, l = \exp(W(q_\star, l)$, $l \in \mathcal{L}$) almost surely when $t \to \infty$, and the limiting products are
characterized by the following set of equations: For all \(l \in \mathcal{L} \),

\[
U^{-1} \left(\frac{\log(\rho^l)}{V} \right) = \frac{\sum_{m, m_l = 1} \prod_{j \in m} (\rho_j^l)}{\sum_{m \in \mathcal{N}} \prod_{j \in m} (\rho_j^l)} (= \gamma^l)
\]

From these equations, we deduce that increasing \(V \) tends to increase the \(\rho^l \)'s, which in turn improves the efficiency of the algorithm. The downside of a large \(V \) is slower convergence.

3.5. Slotted-time Models: Collisions and Tradeoff

3.5.1. Long and short collisions

In the previous subsection, we have analyzed the convergence of UO-CSMA in the ideal continuous-time setting in which collisions are made mathematically impossible. In practical implementation, however, time is slotted and collisions may occur. We consider the following model for slotted CSMA: The transmitter of link \(l \) starts a transmission at the end of a slot with probability \(p_l \) if the slot has been sensed to be idle. When a link is active, it can experience either a successful transmission or a collision. When a link is currently successfully transmitting, it releases the channel with probability \(1/\mu_l \) at the end of a slot. In the case of a collision, interfering links involved in the collision all stop to transmit simultaneously.

We consider two types of collisions:

(a) **Short collisions**: The links involved in a collision all release the channel with probability \(1/\mu \) at the end of a slot. Short collisions may represent RTS/CTS-like procedures: before transmitting, links probe the channel with a small signaling message.

(b) **Long collisions**: The collision duration is equal to the maximum transmission durations of links involved in the collisions. To model long collisions, we assume that the links involved in a collision all release the channel with probability \(1/\mu_c \) at the end of a slot, where \(c \) denotes the set of links experiencing the collision, and \(\mu_c = \max_{l \in c} \mu_l \). Long collisions occur when RTS/CTS-like procedures are not implemented.

In the following, we denote by \(s\text{-CSMA}(p_l, \mu_l, \mu) \) and \(s\text{-CSMA}(p_l, \mu_l) \) the above slotted CSMA algorithm with short and long collisions, respectively.

3.5.2. Impact of collisions on efficiency

We now investigate the impact of collisions on the performance of CSMA algorithms. We consider long collisions only. The case of short collisions can be analyzed similarly. Assume that the transmitter of link \(l \) implements the \(s\text{-CSMA}(p_l, \mu_l) \) algorithm. Define by \(m[t] \) the resulting schedule used in slot \(t \). Note that \(m[t] \) may take any value in \(\mathcal{M} = \{0, 1\}^L \) due to the possibility of collisions. (If \(m_k[t] = 1 = m_k[t] \) and \(\Lambda_U = 1 \), then links \(k \) and \(l \), respectively experience a collision during slot \(t \).

We introduce further notation: for any schedules \(m, m' \in \mathcal{M} \), let \(s(m) \) denote the set of links successfully transmitting in schedule \(m \); let \(s(m, m') \) be the set of links successfully transmitting in both \(m \) and \(m' \); let \(s(m \setminus m') \) be the set of links successfully transmitting in \(m \) but not in \(m' \); let \(c(m) \) be the set of collisions in \(m \) (note that each \(c \in c(m) \) is a set of links, and by convention, we write \(l \in c(m) \) if \(\exists e \in c(m) : l \in e \)); let \(c(m, m') \) be the set of collisions in both \(m \) and \(m' \); let \(c(m \setminus m') \) be the set of collisions in \(m \) but not in \(m' \); finally, let \(n(m) \) be the sets of links that have a neighbor transmitting in \(m \), i.e., \(l \in n(m) \) if \(\exists k \in s(m) \cup c(m) \) such that \(\Lambda_U = 1 \) (note that by convention, if \(l \in n(m) \) then \(l \not\in m \)).

Now \((m[t], t \in \mathbb{N}) \) is a discrete Markov chain whose transition kernel \((\bar{p}_{m,m'}, m, m' \in \mathcal{M}) \) is given by

\[
\bar{p}_{m,m'} = \prod_{l \in s(m,m')} \left(1 - \frac{1}{\mu_l} \right) \prod_{l \in s(m \setminus m')} \frac{1}{\mu_l} \times \prod_{c \in c(m,m')} \left(1 - \frac{1}{\mu_c} \right) \times \prod_{c \in c(m \setminus m')} \frac{1}{\mu_c} \times \prod_{l \in w(m,m')} \left(1 - p_l \right) \times \prod_{l \in w(m \setminus m')} \left(1 - p_l \right)
\]

where \(w(m, m') \) is the set of links that could be activated starting from schedule \(m \) but that are not active in \(m' \). In other words, \(w(m, m') = \mathcal{L} \setminus (m \cup m' \cup n(m)) \). Then one can show that the Markov chain \((m[t], t \in \mathbb{N}) \) is reversible as stated in the following lemma.

Lemma 3. Let \(\mathbf{0} \) be the state such that no link is active. Denote by \(\pi^{p,\mu} \) the probability distribution such that,

\[DOI: 10.1002/wcm\]
Then the following local balance equations are satisfied:

\[\forall m, m', \quad \beta_{m,m'} \pi^p_{m} = \beta_{m',m} \pi^p_{m'} \]

Hence, \(\pi^p_{m} \) is the stationary distribution of the Markov chain \((m[t], t \in \mathbb{N}) \).

Proof. Note first that \(s(m, m') = s(m', m) \) and \(c(m, m') = c(m', m) \). Then remark that:

\[
\prod_{l \in s(m \setminus m')} \frac{1}{\mu_l} = \prod_{l \in s(m')} \frac{1}{\mu_l}
\]

and

\[
\prod_{c \in c(m \setminus m')} \frac{1}{\mu_c} = \prod_{c \in c(m')} \frac{1}{\mu_c}
\]

Similarly,

\[
\frac{\prod_{l \in s(m \setminus m') \cup c(m \setminus m')} \mu_l}{\prod_{l \in s(m') \cup c(m')}} = \frac{\prod_{l \in s(m') \cup c(m')} \mu_l}{\prod_{l \in s(m) \cup c(m)}}
\]

Finally, since

\[
\prod_{l \in w(m \setminus m')} (1 - p_l) = \prod_{l \in w(m \cup m')} (1 - p_l)
\]

we have

\[
\frac{\prod_{l \in w(m \setminus m')} (1 - p_l)}{\prod_{l \in w(m' \setminus m)} (1 - p_l)} = \frac{\prod_{l \in w(m')} (1 - p_l)}{\prod_{l \in w(m)} (1 - p_l)}
\]

Since one can easily check that

\[
\frac{\beta_{m,m'}}{\beta_{m',m}} = \frac{\pi^p_{m}}{\pi^p_{m'}}
\]

since one can easily check that if \(m' \cap n(m) = \emptyset \), then \(m \cap n(m') = \emptyset \).

Note that the superscript \(s \) in \(\pi^p_{m} \) indicates that time is slotted. Under the s-CSMA(\(\lambda_l, \mu_l \))’s algorithms, the link throughputs are given by

\[
\forall l \in \mathcal{L}, \quad \gamma^p_{l} = \sum_{m \in \mathcal{N}, m_l = 1} \pi^p_{m}
\]

From the above analysis, if we wish to get throughputs under slotted CSMA algorithms very close to those obtained under the continuous-time CSMA algorithms, we need either (i) to keep the collision duration \(\mu_l \) negligible compared to the channel holding times \(\mu_l \)’s (for the case with short collisions), or (ii) to keep the transmission probabilities \(p_l \)’s close to 0, and to have very large channel holding times. Condition (i) could be ensured using RTS/CTS-like procedures and having very large channel holding times. Condition (ii) would be met if for all \(l \in \mathcal{L}, p_l = \delta a_l \) and \(\mu_l = \xi_l/\delta \) with \(\delta << 1 \). In such case, in view of Lemma 3 and Equation (19), we have

\[
\forall l \in \mathcal{L}, \gamma^p_{l} = \gamma^o_{l} - C_l \delta + o(\delta)
\]

where for all \(l \in \mathcal{L}, C_l > 0 \) is a constant depending on the \(a_l \)’s and \(\xi_l \)’s, and on the network topology.

To adapt UO-CSMA to the practical scenario where time is slotted, condition (i) is not sufficient. Indeed, the efficiency of UO-CSMA in the continuous-time setting relies on the fact that, at any time \(t \), the probability that a link, say \(l \), becomes active should be proportional to \(\lambda_l[t] \) if its neighbors are idle. If we impose (i) only, the probability at which link \(l \) becomes active is not proportional to \(p_l \), but depends in a complicated manner on the transmission probabilities of its neighbors. In such cases, there is no clear mapping between the \(p_l \)'s (in the slotted-time system) and the \(\lambda_l \)'s (in the continuous-time system).

When imposing condition (ii), this mapping is clear. We can adapt UO-CSMA to the slotted-time setting by choosing a very small parameter \(\delta \), by letting the transmission probabilities and channel holding times be equal to \(\delta a_l \) and \(\xi_l/\delta \) at time \(t \) for link \(l \), and by updating the parameters \((a_l[t], \xi_l[t]) \)’s as in UO-CSMA (where \(\lambda_l[t] = a_l[t] \) and \(\mu_l[t] = \xi_l(t) \)). Since we want to keep the collision rates at a very low level, we need to keep the transmission probabilities very small, which in turn means that in the updates of the \(a_l[t] \)'s and the \(\xi_l[t] \)'s in UO-CSMA should be such that the \(a_l[t] \)'s remain bounded—this is possible since in UO-CSMA what matters are the products \(a_l[t] \xi_l[t] \)'s only, not their individual values. With this modification
of UO-CSMA, we ensure that for all \(l \in \mathcal{L} \), the long-term link throughput of link \(l \) is \(\gamma_{*,l} = C_l\delta + o(\delta) \).

3.5.3. Short-term fairness versus long-term efficiency

As we discussed at the end of Section 3.4, if we want the resulting link throughputs of UO-CSMA to be close to the solution of Problem (4), the products of the transmission probabilities and of the channel holding times need to be very large. In the adaptation of UO-CSMA to the slotted-time scenario, this implies that the channel holding times are very large, since the transmission probabilities must remain very small (to ensure very low collision rates). This further implies that the delay between two successive successful transmissions on a link is very large as well. In other words, to ensure efficiency, we need to sacrifice short-term fairness.

Another source of short-term unfairness with UO-CSMA is the fact that if a link is interfered with by a lot of links (compared to other links), before transmitting it needs to wait until all its neighbors become inactive. This waiting time can be very long, especially if these neighbors do not sense each other. When the link finally gets access to the channel, it then needs to hold the channel for a duration that is much larger than the transmission durations of its neighbors, in order to achieve throughput fairness. This may considerably exacerbate short-term unfairness.

We now quantify the two above observations. We first define the short-term fairness index of link \(l \) as \(1/T_l \) where \(T_l \) is the average delay between two successive successful transmissions on this link. This is in contrast to the standard notion of long-term fairness, which is often captured by the \(\alpha \)-fair utility function and refers to fairness at equilibrium.

For illustrative purpose, we consider a simple star network: it is composed of \(L + 1 \) links, where link 1 is interfered with by all other links (\(A_{1k} = 1 \) for all \(k > 1 \)) and where link \(k, k > 1 \), is interfered with only by link 1 (\(A_{kl} = 0 \) for all \(k, l > 1 \)). At time \(t \), the transmission probability for link \(k \) is \(\delta \times \alpha_l[t] \) and the channel holding time is \(\xi_l[t]/\delta \). We consider long collisions whose durations are equal to the maximum duration of the channel holding times of the links involved in the collision. For this network, the solution of Equation (4) is \(\gamma_l^* = 1/(L+1) \) and \(\gamma^* = L/(L+1) \) for all \(l > 1 \).

Now we run UO-CSMA to update the parameters \((\alpha_l[t], \xi_l[t]) \). As mentioned above, the parameters \(\alpha_l[t] \) need to be bounded. Without loss of generality, we assume here that they are constant and equal to 1, and hence UO-CSMA consists of updating the parameters \(\xi_l[t] \). Assume that we wish to guarantee that after convergence, the throughput of link \(l \) is at least \(\gamma^*_l \times (1 - \epsilon) \). From the analysis in the previous subsection, we know that by scaling\(\delta \) as \(\epsilon \), the throughput of link \(l \) is equal to \(\gamma_{*,l} \times (1 - \epsilon/2 + o(\epsilon)) \). Let \(\xi_{*,l} \) be the value of \(\xi_l[t] \) after convergence of UO-CSMA. Note that, for all \(l > 1 \), by symmetry, \(\xi_{*,l} = \xi_{*} \). Now we have

\[
\gamma_{*,l} = \frac{\xi_{*,l}}{1 + \xi_{*}L + \xi_{*,l}}
\]

and for all \(l > 1 \),

\[
L\gamma_{*,l} = \frac{(1 + \xi_{*,l})^L - 1}{(1 + \xi_{*}L + \xi_{*,l})}
\]

Achieving \(\gamma_{*,l} \geq \gamma_l^*(1 - \epsilon/2) \) for all links \(l \) requires that \(\xi_{*,1} \approx \xi_{*,l}^L/L \) and that \(\xi_{*} \) scales as \(1/\epsilon \). Finally, the channel holding time for channel \(l > 1 \) has to scale as \(1/\epsilon^2 \) whereas that for link 1 has to scale as \(1/\epsilon^2L \). Using classical results in return times of Markov chains [47], we now have that for all links \(l \) the short-term fairness index \(1/T_l \) scales as \(\epsilon^{2L} \). This quantifies the trade-off between efficiency and short-term fairness: in the above star network, to ensure that the throughputs are at a distance at most \(\epsilon \) from the utility-optimal throughputs, the short-term fairness index has to scale as \(\epsilon^{2L} \).

We illustrate this tradeoff numerically using a simple 3-link linear network, where links 1 and 2 (resp. 3 and 2) are interfering with each other, but links 1 and 3 are interference-free. Figure 2 shows the efficiency

![Efficiency versus short-term fairness tradeoff](image)

Fig. 2. Efficiency versus short-term fairness tradeoff in a 3-link linear network. Algorithm parameters: \(b[t] = 0.001 \), \(W(x) = x \), \(V = 1 \), \(\epsilon_{\max} = 0.1 \).
(i.e., $1 - \epsilon$) as a function of $1/(\text{short-term fairness index})$. 10 experiments were carried out with different random seeds for each value on the x-axis. In UO-CSMA, to limit collisions, we maintain all transmission probabilities at a level less than 0.1, i.e., $\epsilon \times a^{\text{max}} = 0.1$. Note that we can achieve quite good efficiency for random access without message passing, e.g., 85%. Pushing this efficiency even higher would sacrifice short-term fairness further.

4. Conclusion and Future Work

Achieving optimality in terms of throughput and fairness has been known to require scheduling algorithms with message passing. Recent works suggest adaptive CSMA without message passing can achieve utility-optimality arbitrarily closely. In this paper, we have confirmed, through a proof that does not rely on the assumption that the network dynamics converge to an equilibrium in between parameter updates, that indeed this is true for the idealized, continuous-time model. However, there is an exponentially large price to pay in terms of short-term fairness in the more realistic, slotted-time model. The algorithm development and convergence proof techniques have been based on a combination of the techniques of loss network modeling and simulated annealing for distributed scheduling from the 1980s.

In addition to extending to multihop cross-layer models, there are also more challenging next steps, especially the characterization and design of transient behavior, including short-term fairness and delay, through the algorithm parameters like V and the function W. Achieving maximum queue stability, in addition to maximum rate stability or utility optimality, without message passing also remains open. Perhaps most importantly, given that ‘simplicity’ is the main attractiveness of this class of adaptive CSMA algorithms, implementing and deploying the proposed algorithms in an operational network will help bridge the gap between theory and practice in wireless scheduling initial progress has been recently been made in implementing UO-CSMA over conventional hardware and deploying it over operational networks [29].

Acknowledgements

We thank L. Jiang, R. Srikant, D. Shah, and J. Walrand for their helpful discussions. This work has been supported in part by IT R&D program of MKE/IITA [2009-F-045-01], Korea Research Council of Fundamental Science and Technology, the Air Force Office of Scientific Research under Grants FA9550-08-1-0480 and FA9550-09-1-0134, the Office of Naval Research Young Investigator Award N00014-07-1-0864, and Presidential Early Career Award for Scientists and Engineers N00014-09-1-0449.

References

Authors’ Biographies

Jiaping Liu received her bachelor’s degree from Shanghai Jiao Tong University in 2004, M.A. from Princeton University in 2006, Ph.D. from Princeton University in 2009, all in Electrical Engineering. Her Ph.D. thesis focused on stochastic modeling and analysis of data networks, and its applications in wireless ad hoc networks, in particular the random access algorithm design of medium access control protocols. She was a research assistant at Bell Laboratories in summer 2007 and visiting scholar at Department of Electrical Engineering at Stanford University in fall 2007. Her Ph.D. work was partially supported by the Gordon Wu Fellowship of Princeton University.

Yung Yi received his B.S. and the M.S. in the School of Computer Science and Engineering from Seoul National University, South Korea in 1997 and 1999, respectively, and his Ph.D. in the Department of Electrical and Computer Engineering at the University of Texas at Austin in 2006. From 2006 to 2008, he was a post-doctoral research associate in the Department of Electrical Engineering at Princeton University. Now, he is an assistant professor at the Department of Electrical Engineering at KAIST, South Korea. His current research interests include the design and analysis of computer networking and wireless communication systems, especially congestion control, scheduling, and interference management, with applications in wireless ad hoc networks, broadband access networks,
and economic aspects of future Internet evolution. He has been served as a TPC member at various conferences such as Wicon 2009-2010, WiOpt 2009-2010, Infocom/ICC/Globecom 2010, and as the local arrangement chair of WiOpt 2009.

Alexandre Proutiere is a researcher in the Systems and Networking group at Microsoft Research, Cambridge, Great Britain. His research interests are in the design and the performance evaluation of computer networks, with a specific interest in resource allocation and control in wireless systems. Before joining Microsoft in June 2007, he was a senior expert researcher at France Telecom R&D and an assistant professor in the computer science department of Ecole Normale Superieure (Paris). He received a PhD in mathematics from Ecole Polytechnique (Palaiseau, France) in 2003, graduated in mathematics from Ecole Normale Superieure (Paris), and qualified as an engineer at Ecole Nationale Superieure des Telecommunications (Paris). He is the recipient of the best paper award of ACM Sigmetrics/Performance 2004, of the best paper award of ACM Mobihoc 2009, and of the ACM Sigmetrics Rising Star award 2009.

Mung Chiang is an Associate Professor of Electrical Engineering, and an Affiliated Faculty of Applied and Computational Mathematics and of Computer Science, at Princeton University. He received the B.S. (Honors) in Electrical Engineering and Mathematics, M.S. and Ph.D. degrees in Electrical Engineering from Stanford University in 1999, 2000, and 2003, respectively, and was an Assistant Professor at Princeton University 2003-2008. His research areas include optimization, distributed control, and stochastic analysis of communication networks, with applications to the Internet, wireless networks, broadband access networks, and content distribution.

H. Vincent Poor received the Ph.D. degree in electrical engineering and computer science from Princeton University in 1977. From 1977 until 1990, he was on the faculty of the University of Illinois at Urbana-Champaign. Since 1990 he has been on the faculty at Princeton, where he is the Dean of Engineering and Applied Science, and the Michael Henry Strater University Professor of Electrical Engineering. Dr. Poor’s research interests are in the areas of stochastic analysis, statistical signal processing and information theory, and their applications in wireless networks and related fields. Among his publications in these areas are Quickest Detection (Cambridge University Press, 2009), co-authored with Olympia Hadjiliadis, and Information Theoretic Security (Now Publishers, 2009), co-authored with Yingbin Liang and Shlomo Shamai.

Dr. Poor is a member of the National Academy of Engineering, a Fellow of the American Academy of Arts and Sciences, and an International Fellow of the Royal Academy of Engineering (U. K.). He is also a Fellow of the IEEE, the Institute of Mathematical Statistics, and other organizations. He served as President of the IEEE Information Theory Society in 1990, and as the Editor-in-Chief of the IEEE Transactions on Information Theory in 2004-07. He is the recipient of the 2005 IEEE Education Medal. Recent recognition of his work includes the 2007 Technical Achievement Award of the IEEE Signal Processing Society, the 2008 Aaron D. Wyner Distinguished Service Award of the IEEE Information Theory Society, and the 2009 Edwin Howard Armstrong Achievement Award of the IEEE Communications Society.