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Summary

It has been recently suggested by Jiang and Walrand that adaptive carrier sense multiple access (CSMA) can achieve
optimal utility without any message passing in wireless networks. In this paper, after a survey of recent work on
random access, a generalization of this algorithm is considered. In the continuous-time model, a proof is presented
of the convergence of these adaptive CSMA algorithms to be arbitrarily close to utility optimality, without assuming
that the network dynamics converge to an equilibrium in between consecutive CSMA parameter updates. In the
more realistic, slotted-time model, the impact of collisions on the utility achieved is characterized, and the tradeoff
between optimality and short-term fairness is quantified. Copyright © 2009 John Wiley & Sons, Ltd.
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1. Introduction

The design of distributed scheduling algorithms
in wireless networks has been extensively studied
under various metrics of efficiency and fairness. In
their seminal work [1], Tassiulas and Ephremides
developed a centralized scheduling algorithm, Max-
Weight scheduling, achieving throughput optimality,
i.e., stabilizing any arrival for which there exists a
stabilizing scheduler. Since then, a large array of lower-
complexity, more distributed scheduling algorithms
has been developed, using the ideas of randomization
(pick-and-compare scheduling), weight approximation
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(maximal/greedy scheduling), or random access with
queue-length exchanges [2–11], to achieve large
stability region under unsaturated arrivals of traffic
at each node in the network. For saturated arrivals,
maximizing a utility function, which captures effi-
ciency and fairness at the equilibrium, has been studied
for slotted-Aloha random access [12–17]. Together
with the principle of ‘Layering as Optimization
Decomposition’, advances in scheduling have also
been translated into improvements in joint congestion
control, routing, and scheduling over multihop wireless
networks [18–22]. There are many more studies on this
topic, as discussed in surveys such as [23].
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A main bottleneck remaining in all the afore-
mentioned studies is the need for message passing.
Tradeoffs of the time complexity of message passing
with throughput and delay have been studied recently
in References [7,6,24,25]. Message passing reduces
the ‘effective’ performance, is vulnerable to security
attacks, and makes the algorithms not fully distributed.
This naturally leads to the following question
on “simplicity-driven design”: Can random access
without message passing approach some type of
performance optimality? The answer was suggested to
be positive last year, first in Reference [26] for wireless
network, with a similar development in a different
context in Reference [27]. A convergence proof for
algorithms and an analysis of the achieved tradeoff
between efficiency and short-term fairness have been
presented in Reference [28], based on which this paper
is developed.

In this paper, we first provide a review of the
literature related to random-access based scheduling
schemes for wireless networks. We then extend the
algorithms in Reference [26], and develop a proof of
the convergence of these algorithms. The proof does
not assume that the network dynamics converge in
between updates of the carrier-sense-multiple-access
(CSMA) parameters, and holds for the continuous-
time Poisson clock model. Finally we turn to more
realistic discrete-time contention and backoff models,
and quantify the effect of collisions. We reveal and
characterize the tradeoff between long-term efficiency
and short-term fairness: short-term fairness decreases
significantly as efficiency loss is reduced. Similar to
other distributed scheduling algorithms, there is a
3-dimensional tradeoff [24]: the price of optimality
without message passing is delay experienced by some
nodes.

The rest of this paper is organized as follows.
In Section 2 we review the literature related to
random-access based scheduling algorithms in wireless
networks. In Section 3, we describe the system
model and the Utility-optimal CSMA (UO-CSMA)
algorithms, and prove the convergence of this class
of algorithms. In Section 3.5, we further study the
impact of collisions in the discrete-time model, and
quantify the tradeoff between long-term efficiency and
short-term fairness. We conclude with a discussion
of future directions on this topic in Section 4.
The theory of UO-CSMA has also started to
be bridged to the practice of wireless scheduling
in practical networks, with implementation over
conventional 802.11 hardware as recently reported
in [29].

2. Random-access Based Scheduling

2.1. Slotted Aloha

The simplest random access medium access control
(MAC) protocol for wireless systems is slotted Aloha,
in which time is slotted and at the beginning of each
slot, each link accesses the channel with a given
probability, should the corresponding transmitter have
some packets to send.

Assume that we have L links and initially that the
transmission probabilities p = (p1, . . . , pL) on the
links are fixed. If links are always backlogged, then
the long-term throughput achieved on link l, µl(p), is
given by

µl(p) = pl

∏
l∈I(l)

(1 − pl) (1)

where I(l) denotes the set of links interfering with link
l. We now introduce the rate region �sA of slotted
Aloha algorithms as the set of rate vectors µ(p) =
(µ1(p), . . . , µL(p)) that can be achieved on the various
links for all possible values of the transmission
probabilities p:

�sA = {v ∈ [0, 1]L| ∃p ∈ [0, 1]L, s.t. v ≤ µ(p)} (2)

where in the above expression, ≤ is taken component-
wise. Note that �sA is not convex and is strictly
included in �, the set of achievable rates using
centralized scheduling algorithms (see Section 3 for a
formal definition). In Figure 1, we stress the difference
between �sA and � for the simple network of two
interfering links. This difference illustrates the well-
konwn inefficiency of slotted-Aloha protocols. All
scheduling schemes based on these protocols inherit
this inefficiency.

In Reference [12], the authors consider networks
with saturated arrivals and single-hop connections, and
aim at identifying the Proportional Fair point in �sA.

Fig. 1. � and �sA.
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Because of the non-convexity of �sA, the problem has
to be modified (a change in variables) so as to make the
underlying optimization problem convex. It has been
shown in Reference [13] that the problem of identifying
the α-fair point in �sA can be transformed to a convex
program provided that α ≥ 1. The algorithm proposed
in Reference [12] to achieve Proportional Fairness
consists of adapting the transmission probabilities on
each link, but requires the use of message passing.

In Reference [30], the authors reverse-engineer the
commonly used Exponential Back-off (EB) algorithm
in slotted Aloha, i.e., they discovered the selfish
utility maximization problems implicitly solved by the
EB algorithm, and showed that the resulting Nash
equilibrium is generally not optimal in network utility.

The aforementioned results have been generalized
to the case of multi-hop connections, see References
[14] and [31]. The proposed algorithms again
require message passing. In References [15,16],
it has been shown that one can reduce message
passing significantly for networks with certain specific
topologies.

The results have also been generalized to the case of
unsaturated arrivals (packets are generated according to
exogenous stochastic processes), in the case of single-
hop connection in Reference [32], and of multi-hop
connections in Reference [17].

2.2. Random Access Schemes with Constant
Time Control Phase

The inefficiency of slotted-Aloha stems from the
inevitable collisions and a lack of proper contention
control. Interfering links with non-negligible transmis-
sion probabilities experience frequent collisions. To
alleviate this problem, some authors propose to divide
each time slot into two parts: a control part and a
transmission part. The control part has M mini-slots,
where M is a parameter. The M mini-slots are used
to sense the neighborhood activities, and decide the
schedule of data transmissions. Here we survey this
method using the algorithms proposed in References
[8,11] and apply to the case of unsaturated sources. To
simplify the exposition, we restrict our attention to the
case of the single-hop interference model.

Let A(v) be the incident links to node v. In each slot
t, each link l performs the following:

Step 1. Compute the normalized queue length 0 ≤
xl(t) ≤ 1 using queue lengths of the interfering

neighbors via message passing:

xl(t) = Ql(t)

max
[ ∑

k∈A(tx(l)) Qk(t),
∑

k∈A(rx(l)) Qk(t)
]

(3)

where tx(l) and rx(l) refer to the transmitter and the
receiver of a link l.

Step 2. Contends for each mini-slot m with probability
pl = f (xl(t), M) for a given function f, if the
contention signals from its interfering links are not
sensed prior to the mini-slot m.

The function f (·), referred to as the access function,
controls the aggressiveness of the medium access
algorithm and must be appropriately chosen to strike
the balance between collisions and channel utilization.
We may classify the algorithms in the literature
according to the choice of the access function. Two
types of access functions have been considered so far:

Type I : f (xl(t), M) = g(M)
xl(t)

M

and

Type II : f (xl(t), M) = 1 − exp
(

− g(M)
xl(t)

M

)

where g(·) is an increasing function.
In Type I algorithms, the choice of g(M) = 1

considered in Reference [8] leads to a (1/3 − 1/M)-
throughput optimal scheduling scheme.‡ The authors
in Reference [8] further show that g(M) = (

√
M −

1)/2 results in a (1/2 − 1/
√

M)-throughput optimal
scheduler. Using Type II algorithms, the authors of
Reference [10] show that with g(M) = log(2M)/2, the
achieved throughput ratio is at least 1

2 − log(2M)
2M

, which
outperforms Type I algorithms.

2.3. CSMA

The random access algorithms presented in Section 2.1
and Section 2.2 have suboptimal, performance and
require message passing. One may wonder whether it is
possible to design distributed schedulers achieving near
optimal, performance without using message passing.

‡A scheme is γ-throughput optimal if for any vector λ in �,
the scheme stabilizes the system for an arrival rate vector
γ × λ.
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In References [33–35], it has been shown that
even non-adaptive CSMA algorithms, where each link
accesses the channel with a fixed probability, are able to
provide average throughputs close to optimality. Using
adaptive CSMA protocols without message passing,
it has been recently suggested in References [26,27]
that one could fill this optimality gap. The idea behind
the algorithms presented in these papers is similar to
that developed by Hajek in Reference [36], where a
simulated-annealing approach is used to realize Max-
Weight schedules.

More precisely, when the problem is to stabilize
the network in the case of unsaturated users, the
authors of References [27,37] propose to adapt the
users’ access rates as a function of their buffer sizes.
When the number of packets waiting in a user’s buffer
becomes large, this user becomes more aggressive
and increases its channel access rate. As discussed in
Reference [34], one issue is that when the buffer of
a given user becomes large, its channel access rate
should also become large. Consequently, to ensure
queue stability and to control the system behavior
for arbitrarily large buffers, one needs to design a
CSMA protocol with arbitrarily large access rates.
This is made possible in References [27] and [37]
by implementing idealized continuous-time CSMA
algorithms, in which Poisson clocks are used to control
the channel accesses, and to ensure zero collisions. In
practice, however, time is slotted and collisions cannot
be avoided. More recently, Reference [38] proposed
a throughput-optimal algorithm in the slotted-time
model, but requires the use of RTS/CTS-like message
passing. Related work also includes Reference
[39] that proposed asymptotically throughput-optimal
when there exists a large number of nodes, and
Reference [40] that improves throughput and fairness
by reducing exposed and hidden nodes in 802.11
networks.

In Reference [26], the authors developed distributed
utility-optimal algorithms in the case of saturated users,
also leveraging the simulated annealing technique.
The proposed algorithms are adaptive CSMA without
message passing in the idealized continuous-time
model, In Reference [28], based on which this paper
is written, we presented a proof of convergence
under no timescale separation and an analytical
quantification of the impact collisions in a slotted-
time system. Recall that the timescale separation
assumption states that in between two updates of the
CSMA parameters, the network dynamics converge
immediately to an equilibrium distribution. In practice
however, the network dynamics can be represented by

a Markov process whose convergence to its stationary
regime is not instantaneous. In the present paper, we
provide a formal proof of convergence of adaptive
CSMA-based algorithms that are extensions of those
proposed in Reference [26], without the timescale
separation assumption. The proof is based on recent
advances in the understanding of stochastic approxi-
mation algorithms with controlled random noise, see
Reference [41]. The proposed algorithms are then
shown to maximize network utility in the continuous-
time model. In the slotted-time model, a tradeoff
between long-term efficiency and short-term fairness is
revealed.

3. UO-CSMA (Utility-optimal CSMA)

3.1. Model and Objective

3.1.1. Model

We consider a wireless network composed of a set L
of L links. Interference is modeled by a symmetric,
boolean matrix A ∈ {0, 1}L×L, where Akl = 1 if link
k interferes with link l, and Akl = 0 otherwise. Define
by N ⊂ {0, 1}L the set of the N feasible link activation
profiles, or schedules. A schedule m ∈ N is a subset
of non-interfering active links (i.e., for any m ∈ N,
mk = 1 = ml implies that Akl = 0). We assume that
the transmitters can transmit at a fixed unit rate when
active. The network is assumed to handle single-hop
data connections. However, the results here can be
extended to multi-hop connections. The transmitter of
each link is saturated, i.e., it always has packets to send.
A scheduling algorithm decides at each time which
links are activated.

3.1.2. Objective

Denote by γs = (γs
l , l ∈ L) the long-term throughputs

achieved by scheduling algorithm s on the various links.
The throughput vector of any scheduling algorithm has
to belong to the rate region � defined by

� =
{

γ ∈ RL
+ : ∃π ∈ RN

+, ∀l ∈ L, γl ≤
∑

m∈N:ml=1

πm,

∑
m∈N

πm = 1
}

In the above, for any schedule m ∈ N, πm can be
interpreted as the proportion of time schedule m is
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activated. As often in the case of saturated users,
the objective is to design a scheduling algorithm
maximizing the total network-wide utility. Specifically,
let U : R+ → R be an increasing, strictly concave,
differentiable objective function. We wish to design an
algorithm solving the following optimization problem:

max �l∈LU(γl), (4)

s.t. γ ∈ �

We denote by γ� = (γ�
l , l ∈ L) the optimizer of

Equation (4). Most distributed scheduling schemes
proposed in the literature to solve Problem (4) make
use of a dual decomposition of the problem into a
rate control and a scheduling problem: a virtual queue
is associated with each link; a rate control algorithm
defines the rate at which packets are sent to the virtual
queues, and a scheduling algorithm decides, depending
on the level of the virtual queues, which schedule to
use with the aim of stabilizing all virtual queues. The
main challenge reduces to developing a distributed and
efficient scheduling algorithm.

3.2. Efficiency of CSMA

CSMA-based random access algorithms are the most
widely used distributed scheduling algorithms in
wireless networks. They are based on random back-
off algorithms such as the Decentralized Coordinated
Function (DCF) in IEEE802.11. The two basic
principles behind CSMA schemes are: (i) to detect
whether the channel is busy before transmitting, and to
refrain from starting a transmission when the channel
is sensed busy, and (ii) to wait a random period of
time before any transmission to limit the probability
of collisions.

The network dynamics under CSMA have been
extensively studied in the literature. The following
model is due to Kelly [42], and has been recently
revisited by the authors of the References [33] and
[35]. In this model, the transmitter of link l waits an
exponentially distributed random period of time with
mean 1/λl before transmitting, and when it initiates a
transmission, it keeps the channel for an exponentially
distributed period of time with mean µl. This CSMA
algorithm is denoted by CSMA(λl, µl) in the rest of
the paper. Define λ = (λl, l ∈ L) and µ = (µl, l ∈ L).
When each link l runs CSMA(λl, µl), the network
dynamics can be captured through a reversible process
[43]: if mλ,µ(t) denotes the active schedule at time t,
then (mλ,µ(t), t ≥ 0) is a continuous-time reversible

Markov chain whose stationary distribution πλ,µ is
given by

∀m ∈ N, πλ,µ
m =

∏
l:ml=1 λlµl∑

n∈N
∏

l:nl=1 λlµl

where by convention
∏

l∈∅(·) = 1. It is worth noting
that due to the reversibility of the process, the
above stationary distribution does not depend on the
distributions of the back-off durations or of the channel
holding times, provided that they are of mean 1/λl and
µl, respectively, for link l. This insensitivity property
allows us to cover a more realistic scenario with
uniformly distributed back-off delays and deterministic
channel holding times.

Under the above continuous-time model, collisions
are mathematically impossible, leading to tractability
as a first step of the study. In practice, however, time
is slotted and the back-off periods are multiples of
slots, which inevitably causes collisions. The impact
of collisions is discussed in detail in Section 3.5.

Under the CSMA(λl, µl)’s algorithms, the link
throughputs are given by

∀l ∈ L, γ
λ,µ
l =

∑
m∈N:ml=1

πλ,µ
m

An important result, proved in Reference [26]
(Propositions 1 and 2), states that any throughput
vector γ ∈ � can be approached using CSMA(λ, µ)
algorithms. More precisely, we have:

Lemma 1 [[26]]. For any γ in the interior of �, there
exist λ, µ ∈ RL+ such that

∀l ∈ L, γl ≤ γ
λ,µ
l

The above lemma expresses the optimality of
CSMA scheduling schemes, and it suggests that for
approaching the solution of Problem (4), one may use
CSMA algorithms.

3.3. Utility-optimal Adaptive CSMA
Algorithms

We now describe a generalized, adaptive CSMA-
based algorithm to approximately solve Equation (4).
The algorithm is an extension of those proposed in
Reference [26], and does not require any message
passing. Time is divided into frames of fixed durations,
and the transmitter of each link updates its CSMA
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parameters (i.e., λl and µl for link l) at the beginning
of each frame. To do so, it maintains a virtual queue,
denoted by ql[t] in frame t, for link l. The algorithm
operates as follows:

UO-CSMA

(1) During frame t, the transmitter of link l runs
CSMA(λl[t], µl[t]), and records the amount Sl[t]
of service received during this frame;

(2) At the end of frame t, it updates its virtual queue
and its CSMA parameters according to

ql[t + 1] =
[
ql[t] + b[t]

W ′(ql[t])

×
(

U ′−1
(W(ql[t])

V

)
− Sl[t]

)]qmax

qmin

and sets λl[t + 1] and µl[t + 1] such that their
product is equal to exp{W(ql[t + 1])}.

In the above algorithm, b : N→ R is a step size
function; W : R+ → R

+ is a strictly increasing and
continuously differentiable function, termed the weight
function; V, qmin, and qmax(> qmin) are positive
parameters, and [·]dc ≡ max(d, min(c, ·)). We will
later see that proper choice of stepsizes b ensures
convergence. The parameter V controls the accuracy
of the algorithm.

Since the performance of CSMA algorithms
depends on the products λlµl only, we have the
choices in UO-CSMA to either update the λl’s (the
contention intensities) and fix the µl’s (the transmission
durations), or to update the µl’s and fix the λl’s, or to
update both the λl’s and µl’s.

3.4. Convergence Analysis

UO-CSMA may be interpreted as a stochastic
approximation algorithm [44]. More precisely, we
show that UO-CSMA is a stochastic approximation
algorithm with controlled Markov noise as defined
in Reference [45]. The main difficulty in analyzing
the convergence of UO-CSMA lies in the fact
that the updates in the virtual queues, and hence
in the CSMA parameters, depend on the random
service processes (Sl[t], t ≥ 0). The service processes
(Sl[t], l ∈ L) received by the various links in turn
depend on the state of the network at the end of
frame t − 1, and on the updated CSMA parameters

(λ[t], µ[t]). The convergence proof would have been
much simpler if we could assume that the network
dynamics converge instantaneously in between CSMA
parameter updates, i.e., if we could assume that Sl[t]
is the service received by link l averaged over the
stationary distribution πλ[t],µ[t]. But, this assumption
is not realistic in wireless networks.

For any vector q ∈ NL, we denote by πq the
distribution on N resulting from the dynamics of the
CSMA(λ, µ) algorithms, where for all l ∈ L, λlµl =
exp(W(ql)). In other words,

∀m ∈ N, πq
m = exp

( ∑
l∈m W(ql)

)
∑

m′∈N exp
( ∑

l∈m′ W(ql)
) (5)

We also denote by γ[t] = (γl[t], l ∈ L) the vector
representing the cumulative average throughputs of the
various links up to frame t, i.e.,

∀l ∈ L, γl[t] = 1

t

t−1∑
n=0

Sl[n]

To prove the convergence of UO-CSMA, we will
need the following assumption.

Assumption 1. If q0 ∈ RL+ solves, W(q0
l ) =

VU ′(
∑

m:ml=1 π
q0

m ), for all l ∈ L, then qmin ≤ q0
l ≤

qmax, for all l ∈ L
Note that, for example, if the utility function U is

such that U ′(0) < +∞, then Assumption 1 is satisfied
when qmin ≤ W−1(VU ′(1)) and qmax ≥ W−1(VU ′(0)).
The next theorem states the convergence of UO-CSMA
under diminishing step-sizes, towards a point that is
arbitrarily close to the utility-optimizer.

Theorem 1. Assume
∑∞

t=0 b[t] = ∞ and∑∞
t=0 b[t]2 < ∞. Under Assumption 1, for any

initial condition q[0], UO-CSMA converges in the
following sense:

lim
t→∞ q[t] = q� and lim

t→∞ γ[t] = γ�, almost surely,

where γ� and q� are such that (γ�, π
q� ) is the solution

of the following convex optimization problem (over γ

and π):

max V
∑
l∈L

U(γl) − �m∈Nπm log πm

s.t. γl ≤
∑

m∈N:ml=1

πm,
∑
m∈N

πm = 1. (6)
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Furthermore, UO-CSMA approximately solves Prob-
lem (4) as

∣∣ ∑
l∈L

(
U(γ�,l) − U(γ�

l )
)∣∣ ≤ log |N|/V . (7)

Proof. As an important step, we show that in UO-
CSMA, the random services Sl[t]’s achieved under the
CSMA algorithms can be averaged as if the frame
t were long enough so that the Sl[t]’s reach their
ergodic averages. We also show that the evolutions of
the CSMA parameters λl[t] and µl[t] asymptotically
approach deterministic trajectories (see Lemma 2). In
the second step, we prove that the resulting averaged
algorithm converges to the solution of Equation (6).
To do this, we use a similar approach as that used in
Reference [26]. The main contribution in our proof is
in Step 1. �

Step 1. From the discrete-time sequence (q[t], t ≥ 0),
we define a continuous function q̄(·) as follows.
Define for all n, tn = ∑n

i=1 b[i], and for all for all
tn < t ≤ tn+1,

q̄l(t) = ql[n] + (ql[n + 1] − ql[n]) ×
( t − tn

tn+1 − tn

)
(8)

Also define Sl(t) = Sl[n]1tn≤t<tn+1 .

Lemma 2 (Convergence and averaging). Fix τ > 0.
Denote by q̃ the solution of the following system of
stochastic differential equations: For all l ∈ L,

q̇l =
[
U ′−1

(
Wl(ql)/V

)
− Sl(t)

]

× 1{qmin≤ql≤qmax}
W ′(ql)

(9)

with q̃(τ) = q̄(τ).§ Then we have that, for all T > 0,

lim
τ→∞ sup

t∈[τ,τ+T ]
‖q̄(t) − q̃(t)‖ = 0 a.s. (10)

Furthermore, almost surely, every limit point of the
trajectories of (9) is a fixed point of the following

§Note that equations (9) still have a stochastic component
through the random variables Sl(t), and they are referred to
as non-autonomous o.d.e.’s.

system of ordinary differential equations (o.d.e.’s): For
all l ∈ L,

q̇l =
[
U ′−1

(
Wl(ql)/V

)
−

∑
m∈N:ml=1

πq
m

]

×1{qmin≤ql≤qmax}
W ′(ql)

(11)

Lemma 2 shows that the trajectory of the continuous
interpolation q̄ of the sequence of the virtual queues
q asymptotically approaches that of q̃. Furthermore,
the fixed points of Equation (9) are basically those
of Equation (11). Note that in the latter o.d.e.’s, the
service Sl[t] received on each link is averaged with
respect to (w.r.t) the stationary distribution πq̃(t) (as if
the virtual queues were frozen). Proving this averaging
property constitutes the key challenge in analyzing the
convergence of UO-CSMA.

Proof of Lemma 2. We attach to each link l a
variable al[t], where al[t] = 1 if the link is active at
time t (at the end of slot t), and 0 otherwise. Now it
can be easily seen that Y [t] = (S[t], a[t]) is a non-
homogeneous Markov chain whose transition kernel
between times t and t + 1 depends on q[t] only. The
updates of the virtual queues in UO-CSMA can be
written as

ql[t + 1] = ql[t] + b[t] × h(ql[t], Yl[t])

where

h(q, Y ) = 1

W ′(q)
(U ′−1(W(q)/V ) − S)) · 1{qmin≤ql≤qmax}

and where Y = (S, a). As a consequence, UO-CSMA
can be seen as a stochastic approximation algorithm
with controlled Markov noise as defined in References
[41] and [45]. To complete the proof of Lemma 2,
we check the sufficient conditions for convergence
provided in Reference [41]:

(1) The transition kernel ofY [t], parameterized byq[t],
is continuous in q[t] (because the transition rates
from one state to another are determined by the
λl[t]’s andµl’s, which are continuous in theql[t]’s).
Note also that fixing q[t] = q0 for all time t, the
obtained Markov chain Y [t] is ergodic (its state-
space is finite and it is irreducible) with stationary
distribution πq0 .
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(2) h is continuous and Lipschitz in the first argument,
uniformly in the second argument. This can be
easily checked, given the properties of the utility
and weight functions U and W and observing
that we restrict our attention to the compact set
[qmin, qmax].

(3) Stability condition: ql[t] ≤ qmax for all l ∈ L and
t ≥ 0.

(4) Tightness condition (corresponding to (†) in
Reference [41][p. 71]): This is satisfied since Y [t]
has a finite state-space (cf. conditions (6.4.1) and
(6.4.2) in Reference [41][p.76]).

Having checked these conditions, we can now apply
Lemma 4 and Theorem 7 (or Corollary 8) of Reference
[41], and the lemma follows. �

In view of Lemma 2, if the system of o.d.e.’s (11)
has a unique fixed point q�, then we would have
limt→∞ q̃(t) = q�. We would also have limt→∞ q[t] =
q� a.s. (This can be shown as in Reference [46].)

Step 2. To complete the convergence proof, we show
as in Reference [26] that Equation (11) may be
interpreted as a sub-gradient algorithm (projected
onto a bounded interval) of the dual of problem (6).
Note that the latter problem is strictly convex, and
hence this sub-gradient algorithm will converge to
the solution of Problem (6). This will imply that
Equation (11) converges to its unique fixed point,
and will prove the convergence of UO-CSMA to the
solution of Problem (6) in view of Step 1.

The Lagrangian of Equation (6) is given by

L(γ, π; ν, η) =
( ∑

l∈L
VU(γl) − νlγl

)

+
( ∑

l∈L
νl

∑
m∈N:ml=1

πm

−
∑
m∈N

πm log πm

)
− η

( ∑
m∈N

πm − 1
)

Then the Karush-Kuhn-Tucker (KKT) conditions of
Equation (6) are given by

VU ′(γl) = νl, ∀l ∈ L, (12)

−1 − log πm +
∑

l:ml=1

νl − η = 0, ∀m ∈ N, (13)

νl ×
(
γl −

∑
m∈N:ml=1

πm

)
= 0, (14)

η ×
( ∑

m∈N
πm − 1

)
= 0, (15)

∀l ∈ L, νl ≥ 0 (16)

We introduce the variables q with ql = W−1(νl) for
l ∈ L, and the bounds νmax = W(qmax) and νmin =
W(qmin). By choosing

η = log


∑

m

exp(
∑

l:ml=1

W(ql))


 − 1

and π = πq, we solve Equations (13) and (15).
Accounting for Equation (14), the sub-gradient of
Equation (12) is

ν̇l =


U ′−1

(
νl/V

)
−

∑
m∈N
:ml=1

πq̃
m


 (17)

which is equivalent to Equation (11), provided that νl(t)
remains between [νmin, νmax]. Under Assumption 1,
the solution ν� = (ν�,l, l ∈ L) of the dual of problem
(6) without the constraints νmin ≤ ν ≤ νmax actually
belongs to the interval [νmin, νmax], and is the fixed
point of Equation (17). So by convexity of the problem,
Equation (17) converges to ν�, and hence the iterations
in Equation (11) converges to q�, which concludes the
proof of the convergence of UO-CSMA.

To prove the inequality (7), we just remark that
Problem (4) is equivalent to the following optimization
problem:

max V�l∈LU(γl)

s.t. γl ≤ �m∈N:ml=1πm,

�m∈Nπm = 1 (18)

Equation (7) is obtained by comparing Problem (6)
and Problem (18), and using the fact that the entropy∑

m πm log πm is always bounded by log |N|. The
proof of Theorem 1 is complete. �

Under the assumption of Theorem 1, the CSMA pa-
rameters of the various transmitters ((λl[t], µl[t]), l ∈
L) are such that their products (λl[t]µl[t], l ∈
L) converge to (ρ�,l = exp(W(q�,l)), l ∈ L) almost
surely when t → ∞, and the limiting products are
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characterized by the following set of equations: For
all l ∈ L,

U ′−1
(

log(ρ�,l)

V

)
=

∑
m:ml=1

∏
j∈m(ρ�,j)∑

m∈N
∏

j∈m(ρ�,j)
(= γ�,l)

From these equations, we deduce that increasing V
tends to increase the ρ�,l’s, which in turn improves the
efficiency of the algorithm. The downside of a large V
is slower convergence.

3.5. Slotted-time Models: Collisions and
Tradeoff

3.5.1. Long and short collisions

In the previous subsection, we have analyzed the con-
vergence of UO-CSMA in the ideal continuous-time
setting in which collisions are made mathematically
impossible. In practical implementation, however, time
is slotted and collisions may occur. We consider the
following model for slotted CSMA: The transmitter
of link l starts a transmission at the end of a slot
with probability pl if the slot has been sensed to be
idle. When a link is active, it can experience either
a successful transmission or a collision. When a link
is currently successfully transmitting, it releases the
channel with probability 1/µl at the end of a slot. In
the case of a collision, interfering links involved in the
collision all stop to transmit simultaneously.

We consider two types of collisions:

(a) Short collisions. The links involved in a collision all
release the channel with probability 1/µ at the end
of a slot. Short collisions may represent RTS/CTS-
like procedures: before transmitting, links probe
the channel with a small signaling message.

(b) Long collisions. The collision duration is equal
to the maximum transmission durations of links
involved in the collisions. To model long collisions,
we assume that the links involved in a collision
all release the channel with probability 1/µc

at the end of a slot, where c denotes the set
of links experiencing the collision, and µc =
maxl∈c µl. Long collisions occur when RTS/CTS-
like procedures are not implemented.

In the following, we denote by s-CSMA(pl, µl, µ)
and s-CSMA(pl, µl) the above slotted CSMA
algorithm with short and long collisions, respectively.

3.5.2. Impact of collisions on efficiency

We now investigate the impact of collisions on the
performance of CSMA algorithms. We consider long
collisions only. The case of short collisions can be
analyzed similarly. Assume that the transmitter of link
l implements the s-CSMA(pl, µl) algorithm. Define
by m[t] the resulting schedule used in slot t. Note
that m[t] may take any value in M = {0, 1}L due to
the possibility of collisions. (If ml[t] = 1 = mk[t] and
Akl = 1, then links k and l experience a collision during
slot t.)

We introduce further notation: for any schedules
m, m′ ∈ M, let s(m) denote the set of links successfully
transmitting in schedule m; let s(m, m′) be the set of
links successfully transmitting in both m and m′; let
s(m \ m′) be the set of links successfully transmitting
in m but not in m′; let c(m) be the set of collisions
in m (note that each c ∈ c(m) is a set of links, and
by convention, we write l ∈ c(m) if ∃c ∈ c(m): l ∈ c);
let c(m, m′) be the set of collisions in both m and m′;
let c(m \ m′) be the set of collisions in m but not in
m′; finally, let n(m) be the links that has a neighbor
transmitting in m, i.e., l ∈ n(m) if ∃k ∈ s(m) ∪ c(m)
such that Akl = 1 (note that by convention, if l ∈ n(m)
then l /∈ m).

Now (m[t], t ∈ N) is a discrete Markov chain whose
transition kernel (βm,m′ , m, m′ ∈ M) is given by

βm,m′ =
∏

l∈s(m,m′)

(
1 − 1

µl

) ∏
l∈s(m\m′)

1

µl

×
∏

c∈c(m,m′)

(
1 − 1

µc

)

×
∏

c∈c(m\m′)

1

µc

∏
l∈s(m′\m)∪c(m′\m)

pl

×
∏

l∈w(m,m′)
(1 − pl) × 1m′∩n(m)=∅

wherew(m, m′) is the set of links that could be activated
starting from schedule m but that are not active in m′. In
other words, w(m, m′) = L \ (m ∪ m′ ∪ n(m)). Then
one can show that the Markov chain (m[t], t ∈ N) is
reversible as stated in the following lemma.

Lemma 3. Let 0 be the state such that no link is active.
Denote by πp,µ,s the probability distribution such that,
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for all m ∈ {0, 1}L \ {0}

πp,µ,s
m = π

p,µ,s
0

∏
l∈s(m)

(plµl)
∏

c∈c(m)

[
µc

∏
l∈c

pl

]

∏
l∈n(m)

(1 − pl)

Then the following local balance equations are
satisfied:

∀m, m′, βm,m′πp,µ,s
m = βm′,mπ

p,µ,s

m′

Hence, πp,µ,s is the stationary distribution of the
Markov chain (m[t], t ∈ N).

Proof. Note first that s(m, m′) = s(m′, m) and
c(m, m′) = c(m′, m). Then remark that:

∏
l∈s(m\m′)

1
µl∏

l∈s(m′\m)
1
µl

=
∏

l∈s(m)
1
µl∏

l∈s(m′)
1
µl

and

∏
c∈c(m\m′)

1
µc∏

c∈c(m′\m)
1
µc

=
∏

c∈c(m)
1
µc∏

c∈c(m′)
1
µc

Similarly,

∏
l∈s(m′\m)∪c(m′\m) pl∏
l∈s(m\m′)∪c(m\m′) pl

=
∏

l∈s(m′)∪c(m′) pl∏
l∈s(m)∪c(m) pl

Finally, since

∏
l∈w(m,m′)

(1 − pl) =
∏

l∈L(1−pl)∏
l∈m∪m′ (1−pl)

∏
l∈n(m)

(1−pl)

we have∏
l∈w(m,m′)(1 − pl)∏
l∈w(m′,m)(1 − pl)

=
∏

l∈n(m′)(1 − pl)∏
l∈n(m)(1 − pl)

Since one can easily check that

βm,m′

βm′,m
= π

p,µ,s

m′

π
p,µ,s
m

since one can easily check that if m′ ∩ n(m) = ∅, then
m ∩ n(m′) = ∅. �

Note that the superscript s in πp,µ,s indicates
that time is slotted. Under the s-CSMA(λl, µl)’s
algorithms, the link throughputs are given by

∀l ∈ L, γ
p,µ,s
l =

∑
m∈N:ml=1

πp,µ,s
m (19)

From the above analysis, if we wish to get
throughputs under slotted CSMA algorithms very close
to those obtained under the continuous-time CSMA
algorithms, we need either (i) to keep the collision
duration µ negligible compared to the channel holding
times µl’s (for the case with short collisions), or (ii) to
keep the transmission probabilities pl’s close to 0, and
to have very large channel holding times. Condition (i)
could be ensured using RTS/CTS-like procedures and
having very large channel holding times. Condition (ii)
would be met if for all l ∈ L, pl = δαl and µl = ξl/δ

with δ << 1. In such case, in view of Lemma 3 and
Equation (19), we have

∀l ∈ L, γ
p,µ,s
l = γ

α,ξ
l − Clδ + o(δ)

where for all l ∈ L, Cl > 0 is a constant depending on
the αl’s and ξl’s, and on the network topology.

To adapt UO-CSMA to the practical scenario where
time is slotted, condition (i) is not sufficient. Indeed,
the efficiency of UO-CSMA in the continuous-time
setting relies on the fact that, at any time t, the
probability that a link, say l, becomes active should
be proportional to λl[t] if its neighbors are idle. If
we impose (i) only, the probability at which link l
becomes active is not proportional to pl, but depends in
a complicated manner on the transmission probabilities
of its neighbors. In such cases, there is no clear mapping
between the pl’s (in the slotted-time system) and the
λl’s (in the continuous-time system).

When imposing condition (ii), this mapping is clear.
We can adapt UO-CSMA to the slotted-time setting
by choosing a very small parameter δ, by letting the
transmission probabilities and channel holding times
be equal to δαl[t] and ξl[t]/δ at time t for link l, and
by updating the parameters (αl[t], ξl[t])’s as in UO-
CSMA (where λl[t] = αl[t] and µl[t] = ξl[t]). Since
we want to keep the collision rates at a very low level,
we need to keep the transmission probabilities very
small, which in turn means that in the updates of the
αl[t]’s and the ξl[t]’s in UO-CSMA should be such
that the αl[t]’s remain bounded—this is possible since
in UO-CSMA what matters are the products αl[t]ξl[t]’s
only, not their individual values. With this modification
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of UO-CSMA, we ensure that for all l ∈ L, the long-
term link throughput of link l is γ�,l − Clδ + o(δ).

3.5.3. Short-term fairness versus long-term
efficiency

As we discussed at the end of Section 3.4, if we want
the resulting link throughputs of UO-CSMA to be close
to the solution of Problem (4), the products of the trans-
mission probabilities and of the channel holding times
need to be very large. In the adaptation of UO-CSMA to
the slotted-time scenario, this implies that the channel
holding times are very large, since the transmission
probabilities must remain very small (to ensure very
low collision rates). This further implies that the delay
between two successive successful transmissions on a
link is very large as well. In other words, to ensure
efficiency, we need to sacrifice short-term fairness.

Another source of short-term unfairness with UO-
CSMA is the fact that if a link is interfered with by a lot
of links (compared to other links), before transmitting
it needs to wait until all its neighbors become inactive.
This waiting time can be very long, especially if these
neighbors do not sense each other. When the link finally
gets access to the channel, it then needs to hold the
channel for a duration that is much larger than the
transmission durations of its neighbors, in order to
achieve throughput fairness. This may considerably
exacerbate short-term unfairness.

We now quantify the two above observations. We first
define the short-term fairness index of link l as 1/Tl

where Tl is the average delay between two successive
successful transmissions on this link. This is in contrast
to the standard notion of long-term fairness, which is
often captured by the α-fair utility function and refers
to fairness at equilibrium.

For illustrative purpose, we consider a simple star
network: it is composed of L + 1 links, where link 1 is
interfered with by all other links (A1k = 1 for all k > 1)
and where link k, k > 1, is interfered with only by link
1 (Akl = 0 for all k, l > 1). At time t, the transmission
probability for link l is δ × αl[t] and the channel
holding time is ξl[t]/δ. We consider long collisions
whose durations are equal to the maximum duration of
the channel holding times of the links involved in the
collision. For this network, the solution of Equation (4)
is γ�

1 = 1/(L + 1) and γ�
l = L/(L + 1) for all l > 1.

Now we run UO-CSMA to update the parameters
(αl[t], ξl[t]). As mentioned above, the parameters αl[t]
need to be bounded. Without loss of generality, we
assume here that they are constant and equal to 1, and
hence UO-CSMA consists of updating the parameters

ξl[t]. Assume that we wish to guarantee that after
convergence, the throughput of link l is at least γ�

l ×
(1 − ε). From the analysis in the previous subsection,
we know that by scaling δ as ε, the throughput of link l
is equal to γ�,l × (1 − ε/2 + o(ε)). Let ξ�,l be the value
of ξl[t] after convergence of UO-CSMA. Note that, for
all l > 1, by symmetry, ξ�,l = ξ�. Now we have

γ�,1 = ξ�,1

(1 + ξ�)L + ξ�,1

and for all l > 1,

Lγ�,l = (1 + ξ�)L − 1

(1 + ξ�)L + ξ�,1

Achieving γ�,l ≥ γ�
l (1 − ε/2) for all links l requires

that ξ�,1 ≈ ξL
� /L and that ξ� scales as 1/ε. Finally,

the channel holding time for channel l > 1 has to
scale as 1/ε2 whereas that for link 1 has to scale
as 1/ε2L. Using classical results in return times of
Markov chains [47], we now have that for all links
l the short-term fairness index 1/Tl scales as ε2L.
This quantifies the trade-off between efficiency and
short-term fairness when implementing UO-CSMA
in slotted-time systems. Achieving high efficiency
requires a considerable deterioration in short-term
fairness: in the above star network, to ensure that the
throughputs are at a distance at most ε from the utility-
optimal throughputs, the short-term fairness index has
to scale as ε2L.

We illustrate this tradeoff numerically using a simple
3-link linear network, where links 1 and 2 (resp. 3
and 2) are interfering with each other, but links 1 and
3 are interference-free. Figure 2 shows the efficiency

Fig. 2. Efficiency versus short-term fairness tradeoff in a
3-link linear network. Algorithm parameters: b[t] = 0.001,

W(x) = x, V = 1, εαmax = 0.1.
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(i.e., 1 − ε) as a function of 1/(short-term fairness
index). 10 experiments were carried out with different
random seeds for each value on the x-axis. In UO-
CSMA, to limit collisions, we maintain all transmission
probabilities at a level less than 0.1, i.e., ε × αmax =
0.1. Note that we can achieve quite good efficiency for
random access without message passing, e.g., 85%.
Pushing this efficiency even higher would sacrifice
short-term fairness further.

4. Conclusion and Future Work

Achieving optimality in terms of throughput and
fairness has been known to require scheduling
algorithms with message passing. Recent works
suggest adaptive CSMA without message passing
can achieve utility-optimality arbitrarily closely. In
this paper, we have confirmed, through a proof that
does not rely on the assumption that the network
dynamics converge to an equilibrium in between
parameter updates, that indeed this is true for the
idealized, continuous-time model. However, there is
an exponentially large price to pay in terms of short-
term fairness in the more realistic, slotted-time model.
The algorithm development and convergence proof
techniques have been based on a combination of the
techniques of loss network modeling and simulated
annealing for distributed scheduling from the 1980s.

In addition to extending to multihop cross-layer
models, there are also more challenging next steps,
especially the characterization and design of transient
behavior, including short-term fairness and delay,
through the algorithm parameters like V and the
function W. Achieving maximum queue stability, in
addition to maximum rate stability or utility optimality,
without message passing also remains open. Perhaps
most importantly, given that ‘simplicity’ is the main at-
tractiveness of this class of adaptive CSMA algorithms,
implementing and deploying the proposed algorithms
in an operational network will help bridge the gap
between theory and practice in wireless scheduling
initial progress has been recently been made in
implementing UO-CSMA over conventional hardware
and deploying it over operational networks [29].
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